致晟光電的EMMI微光顯微鏡依托公司在微弱光信號處理領域技術,將半導體器件在通電狀態(tài)下產(chǎn)生的極低強度光信號捕捉并成像。當器件內部存在PN結擊穿、漏電通道、金屬遷移等缺陷時,會釋放特定波長的光子。致晟光電通過高靈敏度InGaAs探測器、低噪聲光學系統(tǒng)與自研信號放大算法,實現(xiàn)了對納瓦級光信號的高信噪比捕捉。該技術無需破壞樣品,即可完成非接觸式檢測,尤其適合3D封裝、先進制程芯片的缺陷定位。憑借南京理工大學科研力量支持,公司在探測靈敏度、數(shù)據(jù)處理速度、圖像質量等方面,幫助客戶更快完成失效分析與良率優(yōu)化。微光顯微鏡助力排查復雜電路。直銷微光顯微鏡運動
在致晟光電EMMI微光顯微鏡的成像中,背景被完全壓暗,缺陷位置呈現(xiàn)高亮發(fā)光斑點,形成極高的視覺對比度。公司研發(fā)團隊在圖像采集算法中引入了多幀累積與動態(tài)背景抑制技術,使得信號在極低亮度下仍能清晰顯現(xiàn)。該設備能夠捕捉納秒至毫秒級的瞬態(tài)光信號,適用于分析ESD擊穿、閂鎖效應、擊穿電流路徑等問題。與傳統(tǒng)顯微技術相比,致晟光電的系統(tǒng)不僅分辨率更高,還能結合鎖相模式進行時間相關分析,為失效機理判斷提供更多維度數(shù)據(jù)。這種成像優(yōu)勢,使EMMI成為公司在半導體失效分析業(yè)務中相當有代表性的**產(chǎn)品之一。微光顯微鏡成像致晟光電持續(xù)精進微光顯微技術,通過算法優(yōu)化提升微光顯微的信號處理效率。
Obirch(光束誘導電阻變化)與EMMI微光顯微鏡是同一設備的不同工作模式。當金屬覆蓋區(qū)域存在熱點時,Obirch(光束誘導電阻變化)同樣能夠實現(xiàn)有效檢測。兩種模式均支持正面與背面的失效定位,可在大范圍內快速且精確地鎖定集成電路中的微小缺陷點。結合后續(xù)的去層處理、掃描電鏡(SEM)分析及光學顯微鏡觀察,可對缺陷進行明確界定,進一步揭示失效機理并開展根因分析。因此,這兩種模式在器件及集成電路的失效分析領域得到了深入的應用。
EMMI 技術自誕生以來,經(jīng)歷了漫長且關鍵的發(fā)展歷程。早期的 EMMI 受限于探測器靈敏度與光學系統(tǒng)分辨率,只能檢測較為明顯的半導體缺陷,應用范圍相對狹窄。隨著科技的飛速進步,新型深制冷型探測器問世,極大降低了噪聲干擾,拓寬了光信號探測范圍;同時,高分辨率顯微物鏡的應用,使 EMMI 能夠捕捉到更微弱、更細微的光信號,實現(xiàn)對納米級缺陷的精細定位。如今,它已廣泛應用于半導體產(chǎn)業(yè)各個環(huán)節(jié),從芯片設計驗證到大規(guī)模生產(chǎn)質量管控,成為推動行業(yè)發(fā)展的重要力量。我司設備面對閘極氧化層缺陷,微光顯微鏡可檢測其漏電,助力及時解決相關問題,避免器件性能下降或失效。
在芯片和電子器件的故障診斷過程中,精度往往決定了后續(xù)分析與解決的效率。傳統(tǒng)檢測方法雖然能夠大致鎖定問題范圍,但在高密度電路或納米級結構中,往往難以將缺陷精確定位到具體點位。微光顯微鏡憑借對微弱發(fā)光信號的高分辨率捕捉能力,實現(xiàn)了故障點的可視化。當器件因缺陷產(chǎn)生局部能量釋放時,這些信號極其微小且容易被環(huán)境噪聲淹沒,但微光顯微鏡能通過優(yōu)化的光學系統(tǒng)和信號處理算法,將其清晰分離并呈現(xiàn)。相比傳統(tǒng)方法,微光顯微鏡的定位精度提升了一個數(shù)量級,縮短了排查時間,同時降低了誤判率。對于高性能芯片和關鍵器件而言,這種尤為重要,因為任何潛在缺陷都可能影響整體性能。微光顯微鏡的引入,使故障分析從“模糊排查”轉向“點對點定位”,為電子產(chǎn)業(yè)的可靠性提升提供了有力保障。通過算法優(yōu)化提升微光顯微鏡信號處理效率,讓微光顯微在 IC、IGBT 等器件檢測中響應更快、定位更準。高分辨率微光顯微鏡24小時服務
借助微光顯微鏡,工程師能快速定位芯片漏電缺陷。直銷微光顯微鏡運動
在致晟光電的微光顯微鏡系統(tǒng)中,光發(fā)射顯微技術憑借優(yōu)化設計的光學系統(tǒng)與制冷型 InGaAs 探測器,能夠捕捉低至皮瓦(pW)級別的微弱光子信號。這一能力使其在檢測柵極漏電、PN 結微短路等低強度發(fā)光失效問題時,展現(xiàn)出靈敏度與可靠性。同時,微光顯微鏡具備非破壞性的檢測特性,確保器件在分析過程中不受損傷,既適用于研發(fā)階段的失效分析,也滿足量產(chǎn)階段對質量管控的嚴苛要求。其亞微米級的空間分辨率,更讓微小缺陷無所遁形,為高精度芯片分析提供了有力保障。
直銷微光顯微鏡運動