就可以用高敏感度的CCD相機對動物體內進行***觀察而不會傷害到動物本身。在螢光素酶中加入正確的螢光素底物就可以放出熒光,而發(fā)出的光子可以被光敏感元件,如螢光探測器或改進后的光學顯微鏡探測到。這就使得對包括***在內的多種生命活動進程進行觀察成為可能。例如,螢光素酶已經被用于商業(yè)化的次世代焦磷酸定序技術,借由dNTP接上DNA鏈時水解放出的焦磷酸,透過另外一個硫酸鹽腺甘酸轉移酶反應,螢光素酶能將產物ATP與螢光素轉化為冷光,機器借此探測光線并定序。螢光素酶也可以被用于檢測血庫中所存血液中的紅血球是否開始破裂。法醫(yī)可以用含有螢光素酶的溶液來檢測犯罪現(xiàn)場中殘留的血跡。醫(yī)院用螢光素酶的發(fā)光來發(fā)現(xiàn)特定的疾病。螢光素酶還可以作為“報告蛋白”被用于分子生物學研究中,例如,用于在轉染過螢光素酶的細胞中檢測特定啟動子的轉錄情況或用于探測細胞內的ATP的水平;這一技術被稱為報告基因檢測法或螢光素酶檢測法(LuciferaseAssay)。螢光素酶是一個熱敏感蛋白,因此經常被用于研究蛋白熱變性過程中熱休克蛋白的保護能力。此外,螢光素酶水母素的發(fā)光強度與環(huán)境中鈣離子濃度相關,因此可用于檢測生物體內的鈣。D-熒光素鉀鹽測試比較好的公司有哪幾個?無錫螢火蟲熒光素酶D-熒光素鉀鹽活題成像
luciferin)的分子結構如右圖所示:,在氧氣、ATP存在的條件下和熒光素酶發(fā)生反應,生成氧化熒光素(oxyluciferin),分子結構如右圖所示,并產生長發(fā)生光現(xiàn)象。但是該底物熒光素以前大多依賴進口,產品價格昂貴。而且由于該產品容易降解、受潮影響使用效果。所以,需要國產化的方式生產,一方面可以降低成本,一方面可以增強使用效果。作者:科遠迪鏈接:zhuanlan./p/來源:知乎著作權歸作者所有。商業(yè)轉載請聯(lián)系作者獲得授權,非商業(yè)轉載請注明出處。D-luciferin,potassiumsalt熒光素產品說明書發(fā)光原理哺乳動物生物發(fā)光,一般是將Fireflyluciferase基因(由554個氨基酸構成,約50KD)即熒光素酶基因整合到預期觀察的細胞染色體DNA上以表達熒光素酶,培養(yǎng)出能穩(wěn)定表達熒光素酶的細胞株,當細胞分裂、轉移、分化時,熒光素酶也會得到持續(xù)穩(wěn)定的表達。基因、細胞和活題動物都可被熒光素酶基因標記。將標記好的細胞接種到實驗動物體內后,當外源(腹腔或靜脈注射)給予其底物熒光素(D-luciferin,potassiumsalt,以下均簡稱熒光素),即可在幾分鐘內產生長發(fā)生光現(xiàn)象。所發(fā)的光波長在540-600nm。這種酶在ATP,氧存在的條件下,催化熒光素的氧化反應才可以發(fā)光。熒光素二乙酸酯D-熒光素鉀鹽的發(fā)射波長是多少?
其中更有代表性的是一種學名為Photinuspyralis的螢火蟲體內的熒光素酶。在相應化學反應中,熒光的產生是來自于螢光素的氧化,有些情況下反應體系中也包括三磷酸腺苷(ATP)。沒有熒光素酶的情況下,螢光素與氧氣反應的速率非常慢,而鈣離子的存在常??梢赃M一步加速反應(與肌肉收縮的情況相似)。[1]熒光生成反應通常分為以下兩步:螢光素+ATP→螢光素化腺苷酸(luciferyladenylate)+PPi螢光素化腺苷酸+O2→氧熒光素+AMP+光這一反應非常節(jié)省能量,幾乎所有輸入反應的能量都被轉化為光。與之形成鮮明對比的是人類使用的白熾燈,只有越10%的能量被轉化為光,剩余的能量都變?yōu)闊崮芏焕速M。熒光素或熒光素酶不是特定的分子,而是對于所有能夠產生熒光的底物和其對應的酶的統(tǒng)稱,雖然它們各不相同。不同的能夠控制發(fā)光的生物體用不同的熒光素酶來催化不同的發(fā)光反應。更為人所知的發(fā)光生物是螢火蟲,而其所采用不同的熒光素酶與其他發(fā)光生物如熒光菇(發(fā)光類臍菇,Omphalotusolearius)或許多海洋生物都不相同。在螢火蟲中,發(fā)光反應所需的氧氣是從被稱為腹部氣管(abdominaltrachea)的管道中輸入。一些生物,如叩頭蟲,含有多種不同的熒光素酶,能夠催化同一熒光素底物。
螢光素酶(英文名稱:Luciferase)是自然界中能夠產生生物熒光的酶的統(tǒng)稱,其中**有代表性的是一種學名為Photinuspyrali'的螢火蟲體內的螢光素酶,螢火蟲發(fā)光的腹部或海洋的藍色發(fā)光波浪將大自然中生物發(fā)光奇跡呈現(xiàn)于世。在生物化學和分子生物學的早期,這一現(xiàn)象被認為是發(fā)展生物分析的有力平臺。1991年,Promega發(fā)布了***代螢光素酶分析產品,并啟動了基于螢光素酶的進一步創(chuàng)新計劃,通過持續(xù)致力于研究和創(chuàng)新生物發(fā)光系統(tǒng)建立了各種不同的分析技術。Promega螢光素酶技術發(fā)光史里程碑AGlo-ingHistoryofInnovationandDiscovery1990年12月,Promega***提出螢火蟲螢光素酶(Luc)作為一種新興報告基因技術的應用可能性。當時的人們認為,螢火蟲螢光素酶具備的生物發(fā)光特性、極高的靈敏度和快速簡單的檢測流程等特點,可能會對分子生物學家的研究產生重要的影響。幾個月后,***代螢火蟲螢光素酶報告基因載體和檢測試劑在Promega誕生,使這項新技術正式并更***地為全球研究人員服務。隨后30年里,Promega不斷在螢光素酶實驗工具領域推陳出新,保持技術***的地位。這里提到的螢光素酶即熒光素酶。[1]1991螢光素酶檢測系統(tǒng)。做D-熒光素鉀鹽測試真的靠譜嗎?
而是對于所有能夠產生螢光的底物和其對應的酶的統(tǒng)稱,雖然它們各不相同。不同的能夠控制發(fā)光的生物體用不同的螢光素酶來催化不同的發(fā)光反應。**為人所知的發(fā)光生物是螢火蟲,而其所采用不同的螢光素酶與其他發(fā)光生物如熒光菇(發(fā)光類臍菇,Omphalotusolearius)或許多海洋生物都不相同。在螢火蟲中,發(fā)光反應所需的氧氣是從被稱為腹部氣管(abdominaltrachea)的管道中輸入。一些生物,如叩頭蟲,含有多種不同的螢光素酶,能夠催化同一螢光素底物,而發(fā)出不同顏色的螢光。螢火蟲有2000多種,而叩甲總科(包括螢火蟲、叩頭蟲和相關昆蟲)則有更多,因此它們的螢光素酶對于分子系統(tǒng)學研究很有用。如今研究得**透徹的螢光素酶是來自Photinini族螢火蟲中的北美螢火蟲(Photinuspyralis)。[1]螢光素酶可以在實驗室中用基因工程的方法生成,并被用于多種不同的實驗。螢光素酶的基因可以被合成并插入到生物體中或轉染到細胞中。研究者利用基因工程已經使得小鼠、家蠶、馬鈴薯等一些生物可以合成螢光素酶。間接體外成像是一種強大的研究手段,可以對整個動物體中的細胞群落進行分析:將不同類型的細胞(骨髓干細胞、T細胞等)標記上(即表達)螢光素酶。D-熒光素鉀鹽適用于哪些領域?淮安體外研究D-熒光素鉀鹽應用
南京D-熒光素鉀鹽測試公司哪家便宜。無錫螢火蟲熒光素酶D-熒光素鉀鹽活題成像
隨后30年里,Promega不斷在螢光素酶實驗工具領域推陳出新,保持技術帶跑的人的地位。這里提到的螢光素酶即熒光素酶。1991螢光素酶檢測系統(tǒng)(LAR)Promega公司推出的7b0a8f9c-3a4b-41a1-a7f8-3螢光素酶檢測試劑LuciferaseAssaySystem(LAR),為靈敏、非放射性的報告基因檢測拉開了序幕。LAR與螢火蟲螢光素酶(luc)報告基因一起,為研究人員開始了解基因表達調控因子提供了首要的工具。1995Dual-Luciferase?報告基因檢測系統(tǒng)(DLR)DLR是7b0a8f9c-3a4b-41a1-a7f8-3允許在單個樣本中依次檢測兩個報告基因的試劑。通過允許螢光素酶活性的內部歸一化,在提高報告基因檢測的可靠性方面取得了關鍵進展。此外,pGL3報告基因載體系列具有改良后的螢火蟲螢光素酶基因,luc+。這個改造一種報告基因以實現(xiàn)性能改進的例子后來被進一步應用到pGL4和luc2報告基因上,通過生物信息學和合成方法,實現(xiàn)了更大的改進。[1]1999ENLITEN?/UltraGlo?重組螢光素酶Promega公司在早期推出的一種重組螢火蟲螢光素酶(Enliten)基礎上,改造出了一種稱為UltraGlo?的熱穩(wěn)定性螢光素酶。UltraGlo?的開發(fā)是在各種檢測和儲藏條件下進行一步法“加樣-讀數(shù)”檢測的關鍵。此后。無錫螢火蟲熒光素酶D-熒光素鉀鹽活題成像
南京翌科生物科技有限公司致力于商務服務,是一家其他型公司。公司業(yè)務涵蓋外泌體提取,非編碼RNA試劑,檢測試劑,轉染試劑等,價格合理,品質有保證。公司注重以質量為中心,以服務為理念,秉持誠信為本的理念,打造商務服務良好品牌。翌科生物秉承“客戶為尊、服務為榮、創(chuàng)意為先、技術為實”的經營理念,全力打造公司的重點競爭力。