PSTBase是為仿真解決方案打造的理想光學定位交互系統(tǒng)PSTBase系列是專門為滿足定位距離為20厘米至3米的用戶需求而設計,其基礎線定位以及小追蹤距離為20厘米。PSTBase是適用于桌面式定位測量交互或用于仿真設備的理想解決方案(例如,可用于汽車、飛機以及手術仿真或導航等)。PST的定位測量系列產品均為提前校準、即插即用的高精度系統(tǒng)。每臺PSTBase都是完全單獨的測量單元??芍苯娱_箱使用,無需校準且捕捉攝像頭無需進行注冊。。PSTBase的數據結果可通過以太網進行完全透明分享。只需在另外一臺電腦上安a裝客戶軟件并進行連接。PSTBase光學追蹤擁有穩(wěn)定的定位技術以及新穎的外觀光學追蹤器PSTBase使用3D定位技術,可測量固定在被捕捉物體上的主動或被動標記的3D位置。使用此信息,每臺PSTBase設備都可以確定在特定測量容積內的被標記物體的位置和方向。使用PSTBase,您可將任意物體轉換為3D測量目標。對于需要根據自己的特定用例進行定位測量的用戶,可使用定制化解決方案。如您想要了解具體案例或討論可能性,請與我們聯系。PSTBase光學定位儀案例研究:C-Station3DWorkstation將PSTBase與PS-Medtech的C-Station集成。該系統(tǒng)是用于可視化復雜醫(yī)療數據的完整工具。遼寧雙目紅外光學醫(yī)療設備價格,可以咨詢位姿科技(上海)有限公司;河南雙目紅外光學公司地址
虛擬現實中用到的五種定位追蹤技術虛擬現實在仿真環(huán)境中當使用者進行位置移動時,計算機可以迅速進行復雜的運算,將精確的動態(tài)運動特征傳回,從而產生強大的臨場感、真實感。要實現該類應用,首先要讓計算機感知使用者在虛擬空間中所處的位置,包括距離和角度等,所以說位置追蹤技術是虛擬現實技術中的重要組成部分之一。目前常用的定位主要有超聲式、光學式、電磁式和機械式四種技術專業(yè)方向,當然還有慣性和圖像提取的技術方式,同時,不依賴于傳感器而直接識別人體人體特征的運動捕捉技術也將很快進入實用,從技術角度來看,運動捕捉就是要測量、、記錄物體在三維空間中的運動軌跡。1、超聲式位置追蹤系統(tǒng)(Hexamite超聲波定位系統(tǒng))是利用不同的超聲波到達某一特定位置的相位差或是時間差來實現對目標物體的定位和的,但其會因超聲波的反射、輻射或空氣的流動造成誤差,另外,它的更新頻率較低,而且要求超聲發(fā)射器和超聲接收傳感器之間沒有阻擋。這些因素限制了超聲定位的精度、速度和其應用范圍。2、光學式位置追蹤系統(tǒng)(PST光學位置追蹤系統(tǒng))是通過對目標物體上特定光點的和監(jiān)視來完成運動定位和捕捉任務的。對于空間中的某一點,只要它能同時為兩攝像頭所見。西城區(qū)的雙目紅外光學品牌有哪些上海雙目紅外光學醫(yī)療設備價格,可以咨詢位姿科技(上海)有限公司;
光學導航系統(tǒng)的測量類型編輯語音已經發(fā)展的光學導航系統(tǒng)的測量類型分為下面幾類:圖像信息測量圖像信息測量主要是指利用導航相機獲得天體中心、天體邊緣和天體表面可視導航目標的圖像,用于光學導航。如深空1號,利用MICAS對小行星和背景星進行光學測量,獲得小行星和背景星的圖像信息。美國JPL實驗室的Bhaskaran等提出的繞飛小天體的軌道確定是利用導航相機觀測的小天體邊緣圖像。日本的MUSES-C任務是利用導航相機對小行星表面的可視著陸目標進行拍照。角度信息測量角度信息測量指對己知天體視線夾角的測量。如1)SS-ANARS(空間六分儀),利用空間六分儀的基準,測量恒星與地球和月球邊緣的夾角;2)TAOS計劃中的MANS自主導航系統(tǒng),計算太陽、月球和地心矢量之間的夾角;3)AGN(自主制導和導航系統(tǒng))測量探測器與行星和恒星的夾角;天文導航中的近天體/探測器/遠天體夾角測量、近天體/探測器/近天體夾角測量及探測器對近天體視角的測量。視線信息測量視線信息測量指對己知天體中心或者目標天體表面的特征點視線方向的測量。如1)林肯實驗衛(wèi)星(LES),測量太陽矢量和地心矢量;2)德克薩斯大學(TexasUniversity)的Tucknese等提出的月球探測轉移段的自主導航系統(tǒng)。
從節(jié)點浮標按照自身序號信息在收到同步碼后延遲預定時隙廣播自身位置和探測目標的方位信息,主浮標累積該信息,以120s為周期隨同步碼廣播利用累積信息計算的目標運動參數及自身位置,各浮標接收該信息后進行空間對準并獲取目標位置。母船應按照正多邊形布置浮標,若浮標自帶動力可航行,各浮標航路終點的拓撲結構為正多邊形。按照測量孔徑原理,浮標的優(yōu)布置位置呈直線等間隔布置且直線方向與目標航向一致,這種布置能保證測量精度達到優(yōu),但實際使用時目標航向是未知的,在這種條件下,優(yōu)的拓撲結構仍為正多邊形布置,原因如下:1)保證目標以任何航向航行或機動時,浮標陣的綜合孔徑大;2)若浮標無動力,可大程度節(jié)約布放母船的航行距離,若浮標有動力,可大程度節(jié)約多個浮標總體的航行距離,有利于浮標同時出水工作;3)各浮標綜合通信距離短,有利于各浮標的無線自組織網絡構建。圖4多光學浮標聯合定位信息流程圖4聯合定位計算結果與分析非線性小二乘法定位效果理論上可采用Cramer-Rao界值分析,即式(5)中H(tk)TH(tk)矩陣的逆矩陣主對角線元素[12]。實際工程中,定位誤差不來源于測量的隨機誤差,也來源于,是各誤差綜合疊加的結果,很難以數學解析的形式描述。四川雙目紅外光學醫(yī)療設備價格,可以咨詢位姿科技(上海)有限公司;
鏡頭是集聚光線,使膠卷能獲得清晰影像的結構。早期的鏡頭都是由單片凸透鏡所構成。因為清晰度不佳,又會產生色像差,而漸被改良成復式透鏡,即以多片凹凸透鏡的組合,來糾正各種像差或色差,并且借著鏡頭的加膜(coating)處理,增加進光量,減少耀光,使影像的素質的提高。一般而言,攝影用的透鏡均為聚焦透鏡,依照光學原理、由遠處而來的光線穿過具有聚焦作用的透鏡后,會全部聚焦于一點,這一點即焦點。而從焦點到鏡頭的中心點之距離即稱焦距。在相機上,鏡頭的中心點通常都位于光圈處,而焦點位于焦點平面上(即膠卷面)。故相機的焦距為鏡頭對焦在無限遠時,光圈到膠卷間的距離。光學鏡頭是機器視覺系統(tǒng)中必不可少的部件,直接影響成像質量的優(yōu)劣,影響算法的實現和效果。光學工業(yè)鏡頭用于反射度極高的物體定位檢測,如:金屬、玻璃、膠片、晶片等表面的劃傷檢測,芯片和硅晶片的破損檢測,MARK點定位,玻璃割片機、點膠機、SMT檢測、貼版機等工業(yè)精密對位、定位、零件確認、尺寸測量、工業(yè)顯微等CCD視覺對位、測量裝置等領域。為大家分享一下關于光學鏡頭的三種分類!按結構分類固定光圈定焦鏡頭簡單:鏡頭只有一個可以手動調整的對焦調整環(huán)。重慶雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;通州區(qū)雙目紅外光學品牌有哪些
安徽雙目紅外光學醫(yī)療設備價格,可以咨詢位姿科技(上海)有限公司;河南雙目紅外光學公司地址
自動光圈電動變焦鏡頭與自動光圈定焦鏡頭相比增加了兩個微型電機,其中一個電機與鏡頭的變焦環(huán)合,當其轉動時可以控制鏡頭的焦距;另一電機與鏡頭的對焦環(huán)合,當其受控轉動時可完成鏡頭的對焦。但是由于增加了兩個電機且鏡片組數增多,鏡頭的體積也相應增大。電動三可變鏡頭與自動光圈電動變焦鏡頭相比,只是將對光圈調整電機的控制由自動控制改為由d2c0ca8a-f532-4205-9366-8來手動控制。按焦距分類(約50度左右),廣角鏡頭和特廣角鏡頭(100-120度)標準鏡頭視角約50度,也是人單眼在頭和眼不轉動的情況下所能看到的視角,所以又稱為標準鏡頭。5mm相機的標準鏡頭的焦距多為40mm,50mm或55mm。120相機的標準鏡頭焦距多為80mm或75mm。CCD芯片越大則標準鏡頭的焦距越長。廣角鏡頭視角90度以上,適用于拍攝距離近且范圍大的景物,又能刻意夸大前景表現強烈遠近感即。35mm相機的典型廣角鏡頭是焦距28mm,視角為72度。120相機的50,40mm的鏡頭便相當于35mm相機的35,28mm的鏡頭.長焦距鏡頭適于拍攝距離遠的景物,景深小容易使背景模糊主體突出,但體積笨重且對動態(tài)主體對焦不易。35mm相機長焦距鏡頭通常分為三級,135mm以下稱中焦距,135-500mm稱長焦距。河南雙目紅外光學公司地址
位姿科技(上海)有限公司屬于數碼、電腦的高新企業(yè),技術力量雄厚。公司是一家私營獨資企業(yè)企業(yè),以誠信務實的創(chuàng)業(yè)精神、專業(yè)的管理團隊、踏實的職工隊伍,努力為廣大用戶提供***的產品。公司業(yè)務涵蓋光學定位,光學導航,雙目紅外光學,光學追蹤,價格合理,品質有保證,深受廣大客戶的歡迎。位姿科技將以真誠的服務、創(chuàng)新的理念、***的產品,為彼此贏得全新的未來!