處理:采用化學方法或物理方法對廢水中的放射性同位素進行降解或分離。測量:測定處理后的廢水中是否還含有放射性同位素。排放:將處理后的放射性廢水按照國家或地方標準排放到環(huán)境中。根據(jù)國家和地方的法規(guī)和標準,放射性廢液處理系統(tǒng)需要嚴格控制廢水的放射性污染物含量,使其排放到環(huán)境中后不會對人類健康和生態(tài)環(huán)境產(chǎn)生危害。因此,在進行放射性廢液處理時,需要遵循相應的標準和規(guī)范,確保處理過程的安全可靠。儲存衰變十個半衰期后,進行輻射水平檢測測量,達到國家相關(guān)標準后就可以按一般廢物處理了;固體放射性廢物也同樣是先置于符合國家屏蔽要求的廢物室集中統(tǒng)一儲存,待自然衰變十個半衰期后,對其表面進行輻射水平檢測,達到國家要求后就可以按一般廢物處理了。分離:通過機械或化學手段分離出放射性同位素,使其不再混合于廢水中。處理:采用化學方法或物理方法對廢水中的放射性同位素進行降解或分離。測量:測定處理后的廢水中是否還含有放射性同位素。排放:將處理后的放射性廢水按照國家或地方標準排放到環(huán)境中。根據(jù)國家和地方的法規(guī)和標準,放射性廢液處理系統(tǒng)需要嚴格控制廢水的放射性污染物含量,使其排放到環(huán)境中后不會對人類健康和生態(tài)環(huán)境產(chǎn)生危害。 國內(nèi)首臺核醫(yī)學廢液即時凈化裝置由中國核動力研究設計院研發(fā)。無錫實驗室監(jiān)控系統(tǒng)多少錢
確保裝置在安全穩(wěn)定的狀態(tài)下運行。這種智能化監(jiān)控與自動化控制技術(shù)的應用,不僅提高了裝置的處理效率和可靠性,還極大地降低了人工操作帶來的潛在風險,實現(xiàn)了核醫(yī)學廢液處理的精細化管理。制定放射性泄漏應急流程,配備應急吸附材料(如沸石、膨潤土)和封閉式排水裝置。環(huán)境評估:定期對排放口周邊土壤、水體進行采樣,檢測放射性核素遷移情況(如131I易在甲狀腺富集,需重點關(guān)注)。公眾透明化:通過醫(yī)院官網(wǎng)或公告欄公示污水監(jiān)測結(jié)果,接受社會監(jiān)督,減少公眾對輻射的恐慌心理。3.國際經(jīng)驗借鑒參考國際原子能機構(gòu)(IAEA)《放射性廢物管理安全標準》,優(yōu)化本地化監(jiān)測方案。例如,德國要求核醫(yī)學廢水須經(jīng)三級衰變池處理,日本則強制采用“雙回路排水系統(tǒng)”防止管道殘留污染。 沈陽醫(yī)用廢液監(jiān)測系統(tǒng)直銷住院患者洗漱、淋浴廢水無需進入衰變池,可直接排入普通下水道。
核醫(yī)學科的衰變池是用來放置、儲存和處理放射性核素的設備,用于安全地處理放射性核素使用后產(chǎn)生的廢水和廢料。其功能主要是使放射性核素在經(jīng)過一定時間的衰變后,放射性活度水平降低,從而降低對環(huán)境和工作人員的輻射風險。目前,醫(yī)院常采用的衰變池設計為推流式和間歇式2種,通常衰變池的容積按**長半衰期放射性核素的10個半衰期來計算。衰變池應位于臨近核醫(yī)學科且人員較少到達的位置,如核醫(yī)學科底層、周邊或臨近排水管道的藻類生物帶。因放射性核素半衰期不同,設計衰變池時,應分開收集排放??梢栽O計1個分流式衰變池,將推流式衰變池和間歇式衰變池結(jié)合,將長半衰期的放射性廢水排入間歇式衰變池,短半衰期的放射性廢水排入推流式衰變池。根據(jù)患者接受***的放射性核素的半衰期長短,將衛(wèi)生間劃分為不同區(qū)域,并通過控制管道排放閘門實現(xiàn)長、短半衰期放射性廢水的分流處理。控制區(qū)和衛(wèi)生間內(nèi)的設施應選用腳踏式或自動感應式開關(guān),以防止誤排和減少排放。整個放射性廢水收集管道布局,閥門和管道的連接應盡量避免形成滯留區(qū),下水道應盡可能短,一些大水流管道需要設置清晰標識,有效防止放射性廢水聚集,以及便于日常維護。
二、核醫(yī)學衰變池設計標準與合規(guī)性解析核醫(yī)學衰變池的設計需嚴格遵循**《核醫(yī)學輻射防護與安全要求》(HJ1188-2021)和《電離輻射防護與輻射源安全基本標準》(GB18871)**,**要點包括:1.池體結(jié)構(gòu)與容積計算槽式衰變池:適用于含碘-131***病房,需設置污泥池和至少2組槽式池體,交替貯存、衰變和排放廢液。單池容積需根據(jù)核素半衰期、日排水量及應急清洗需求綜合計算,例如含碘-131廢液的池體容積需滿足180天暫存期的比較大累積量。輻射屏蔽:采用≥20cm厚混凝土或內(nèi)襯鉛板,確保池體表面輻射劑量率≤μSv/h。2.智能化監(jiān)測與排放控制在線監(jiān)測:需配備放射性活度監(jiān)測儀,實時顯示總α、總β及關(guān)鍵核素(如碘-131)濃度,數(shù)據(jù)接入環(huán)保部門監(jiān)管平臺。排放管理:單次排放活度≤1ALImin(碘-131為9E+5Bq),每月總排放活度≤10ALImin,排放后需用3倍水量沖洗。3.運維與檔案管理人員資質(zhì):操作人員需持輻射安全培訓合格證,每年職業(yè)照射劑量≤20mSv。臺賬記錄:詳細記錄廢液核素名稱、體積、暫存時間、監(jiān)測結(jié)果等,檔案保存期≥10年。廣州維柯的系統(tǒng)通過模塊化設計,可靈活適配不同規(guī)模醫(yī)院的需求。例如,某地級市醫(yī)院采用其3池聯(lián)動方案后,廢液處理周期縮短40%。 日處理能力 200 噸,采用 “熱解焚燒 + 煙氣凈化” 工藝,配套建設醫(yī)療廢物信息化管理系統(tǒng)。
衰變池還應當設計1個系統(tǒng)預警裝置,當排放的放射性廢水的輻射劑量超過《電離輻射防護與輻射源安全基本標準》(GB18871—2002)中的要求時,系統(tǒng)應報警以提示維護人員進行檢修。參考深圳市地方標準《核醫(yī)學廢水處理技術(shù)規(guī)范》(DB4403/T574—2025),設計施工單位應根據(jù)使用放射性核素的半衰期和活度、日常及事故應急產(chǎn)生的廢水量、衰變池結(jié)構(gòu)參數(shù)來設計衰變池容積。四、思考與展望我們團隊通過初步收集入院接受***患者的生活廢水并進行放射性計數(shù),得出177Lu***當天及之后患者洗浴產(chǎn)生的生活廢水可直接排入**廢水處理系統(tǒng)的結(jié)論。然而,由于樣本量較少且在測量方面存在局限,未來將進行更加***、系統(tǒng)的統(tǒng)計,并評估放射性廢水處理和衰變池設計對環(huán)境(包括水體、土壤和生態(tài)系統(tǒng))的潛在影響,以及放射性核素對人體健康的影響,特別是長期低劑量輻射的風險。通過健康風險評估,將制定相應的防護措施,如限制排放量、加強監(jiān)測和防護等手段。 對于該項目“高效化、智能化、效益化”的技術(shù)優(yōu)點,我國核醫(yī)學領(lǐng)域戰(zhàn)略科學家給予了高度肯定,并積極推薦。西安醫(yī)院衰變池控制系統(tǒng)價格
結(jié)合 PLC 控制系統(tǒng)實現(xiàn)三池交替運行,確保廢液在池內(nèi)停留時間達標。無錫實驗室監(jiān)控系統(tǒng)多少錢
三、廣州維柯案例:西南某三甲醫(yī)院廢液處理升級實踐項目背景:西南某三甲醫(yī)院核醫(yī)學科日均接診量超200人次,原有衰變池因容積不足導致碘-131廢液溢出風險高,且人工監(jiān)測誤差大,需升級處理系統(tǒng)。解決方案:硬件改造:新建2組30m3槽式衰變池,采用混凝土+鉛板雙層屏蔽,設置**取樣口和防溢出裝置。安裝廣州維柯智能在線監(jiān)測系統(tǒng),集成放射性活度、pH值、流量傳感器,數(shù)據(jù)實時上傳至醫(yī)院輻射安全管理平臺。流程優(yōu)化:引入三池交替運行模式:一池進料、一池衰變、一池排放,確保廢液停留時間嚴格達標。開發(fā)AI預測模型,根據(jù)歷史數(shù)據(jù)自動調(diào)整每日比較大進液量,避免池體過載。實施效果:效率提升:處理周期從180天縮短至150天(通過動態(tài)優(yōu)化停留時間),日處理能力提升60%。安全強化:系統(tǒng)運行12個月內(nèi),未發(fā)生放射性泄漏事件,監(jiān)測數(shù)據(jù)合格率100%。成本節(jié)約:運維人員減少50%,材料更換周期延長至5年,年綜合成本降低30%。該項目成為西南地區(qū)核醫(yī)學廢液處理**案例,其經(jīng)驗已被納入《四川省醫(yī)用同位素產(chǎn)業(yè)發(fā)展行動計劃》推薦方案。 無錫實驗室監(jiān)控系統(tǒng)多少錢