隨著6G、AI大模型與MEC的深度融合,倍聯(lián)德正布局兩大前沿方向:邊緣大模型:將參數(shù)量達(dá)6710億的醫(yī)療大模型壓縮至邊緣設(shè)備可運(yùn)行范圍,支持基層醫(yī)院在本地完成從術(shù)前規(guī)劃到術(shù)中決策的全流程AI輔助;數(shù)字孿生工廠:通過(guò)邊緣計(jì)算實(shí)時(shí)映射生產(chǎn)線數(shù)據(jù),結(jié)合數(shù)字孿生技術(shù)實(shí)現(xiàn)產(chǎn)能預(yù)測(cè)、能耗優(yōu)化等智能決策,使工廠運(yùn)營(yíng)成本降低25%?!癕EC不是對(duì)云計(jì)算的替代,而是智能世界的‘神經(jīng)末梢’。”王偉表示。倍聯(lián)德已與華為、英特爾等企業(yè)成立“邊緣計(jì)算產(chǎn)業(yè)聯(lián)盟”,未來(lái)三年計(jì)劃在100個(gè)工業(yè)園區(qū)、50家三甲醫(yī)院部署邊緣智能解決方案,讓算力像水電一樣觸手可及。在這場(chǎng)邊緣變革中,這家深圳企業(yè)正以技術(shù)創(chuàng)新重新定義產(chǎn)業(yè)邊界。邊緣計(jì)算正在改變我們對(duì)實(shí)時(shí)數(shù)據(jù)分析的理解。機(jī)架式系統(tǒng)邊緣計(jì)算質(zhì)量
邊緣計(jì)算資源有限,攻擊者利用僵尸網(wǎng)絡(luò)發(fā)起低頻高并發(fā)攻擊,可輕易耗盡邊緣節(jié)點(diǎn)算力。2024年某智能電網(wǎng)試點(diǎn)項(xiàng)目中,攻擊者通過(guò)偽造海量電力負(fù)荷數(shù)據(jù)請(qǐng)求,導(dǎo)致區(qū)域邊緣控制中心癱瘓2小時(shí),影響10萬(wàn)戶供電。更隱蔽的攻擊方式是針對(duì)邊緣AI模型的“數(shù)據(jù)投毒”,通過(guò)篡改訓(xùn)練數(shù)據(jù)使模型誤判,某自動(dòng)駕駛測(cè)試場(chǎng)曾因此發(fā)生碰撞事故。邊緣設(shè)備部署環(huán)境復(fù)雜,從工廠車間到野外基站,物理防護(hù)措施薄弱。某油田的邊緣數(shù)據(jù)采集終端因未安裝防拆報(bào)警裝置,被不法分子直接拔除硬盤,導(dǎo)致地質(zhì)勘探數(shù)據(jù)長(zhǎng)久丟失。供應(yīng)鏈環(huán)節(jié)同樣存在風(fēng)險(xiǎn),某邊緣服務(wù)器廠商因使用被篡改的固件,導(dǎo)致交付的200臺(tái)設(shè)備均預(yù)置后門。廣東道路監(jiān)測(cè)邊緣計(jì)算定制開發(fā)邊緣計(jì)算使得邊緣設(shè)備可以自主處理數(shù)據(jù),減少了對(duì)云端的依賴。
據(jù)IDC預(yù)測(cè),到2026年,全球5G邊緣計(jì)算市場(chǎng)規(guī)模將突破500億美元,年復(fù)合增長(zhǎng)率超40%。倍聯(lián)德正加速布局兩大方向:邊緣大模型:將千億參數(shù)模型壓縮至邊緣設(shè)備可運(yùn)行范圍,實(shí)現(xiàn)質(zhì)檢、安全監(jiān)控等場(chǎng)景的本地化智能決策;5G-TSN融合:通過(guò)時(shí)間敏感網(wǎng)絡(luò)(TSN)與5G低時(shí)延特性的結(jié)合,構(gòu)建確定性工業(yè)通信底座,支撐AGV協(xié)同、遠(yuǎn)程操控等超實(shí)時(shí)場(chǎng)景。在5G與邊緣計(jì)算的深度融合中,數(shù)據(jù)處理的被徹底打通。以倍聯(lián)德為象征的技術(shù)企業(yè),正通過(guò)硬件創(chuàng)新、軟件優(yōu)化與生態(tài)共建,推動(dòng)邊緣計(jì)算從“輔助工具”升級(jí)為“重要基礎(chǔ)設(shè)施”,為數(shù)字經(jīng)濟(jì)的高質(zhì)量發(fā)展注入新動(dòng)能。
便攜式醫(yī)療設(shè)備通過(guò)邊緣計(jì)算實(shí)現(xiàn)本地生命體征分析,在斷網(wǎng)情況下仍能持續(xù)監(jiān)測(cè)患者心率、血氧等指標(biāo)。某三甲醫(yī)院的心電監(jiān)護(hù)儀采用邊緣架構(gòu)后,室顫識(shí)別延遲從15秒縮短至0.5秒,為急救爭(zhēng)取了黃金時(shí)間。此外,手術(shù)機(jī)器人的邊緣計(jì)算模塊可實(shí)時(shí)處理4K影像數(shù)據(jù),確保主刀醫(yī)生操作的精確性。隨著5G與AI技術(shù)的融合,邊緣計(jì)算與云計(jì)算正從“替代競(jìng)爭(zhēng)”轉(zhuǎn)向“協(xié)同共生”。在智能電網(wǎng)場(chǎng)景中,邊緣節(jié)點(diǎn)實(shí)時(shí)監(jiān)測(cè)變壓器溫度,云端平臺(tái)分析歷史數(shù)據(jù)預(yù)測(cè)設(shè)備壽命;在智慧農(nóng)業(yè)領(lǐng)域,田間傳感器通過(guò)邊緣計(jì)算控制灌溉系統(tǒng),云端AI模型優(yōu)化種植方案。據(jù)IDC預(yù)測(cè),到2026年,80%的企業(yè)將采用邊云協(xié)同架構(gòu),其數(shù)據(jù)處理效率較單一模式提升3倍以上。邊緣計(jì)算技術(shù)正在不斷演進(jìn),以適應(yīng)更普遍的應(yīng)用場(chǎng)景。
面對(duì)企業(yè)跨園區(qū)、跨地域的算力調(diào)度需求,倍聯(lián)德創(chuàng)新提出“中心云-邊緣云-終端設(shè)備”三級(jí)協(xié)同架構(gòu)。其自主研發(fā)的MEC編排器可動(dòng)態(tài)分配算力資源:在深圳某三甲醫(yī)院的遠(yuǎn)程手術(shù)場(chǎng)景中,系統(tǒng)自動(dòng)將4K影像渲染任務(wù)分配至院內(nèi)邊緣節(jié)點(diǎn),而AI病理分析模型則運(yùn)行于云端,使單臺(tái)手術(shù)數(shù)據(jù)傳輸量減少92%,同時(shí)保障99.99%的可靠性。這一架構(gòu)的突破性在于“算力隨需而動(dòng)”。在東莞某電子廠的柔性生產(chǎn)線改造項(xiàng)目中,倍聯(lián)德方案支持200個(gè)邊緣節(jié)點(diǎn)根據(jù)訂單類型自動(dòng)切換算法模型,使產(chǎn)線換型時(shí)間從4小時(shí)縮短至15分鐘,設(shè)備綜合效率(OEE)提升18%。能源行業(yè)通過(guò)邊緣計(jì)算實(shí)現(xiàn)電網(wǎng)設(shè)備的預(yù)測(cè)性維護(hù),降低非計(jì)劃停機(jī)損失。安防邊緣計(jì)算設(shè)備
在視頻監(jiān)控場(chǎng)景中,邊緣計(jì)算支持實(shí)時(shí)目標(biāo)檢測(cè)和異常行為分析,降低存儲(chǔ)成本。機(jī)架式系統(tǒng)邊緣計(jì)算質(zhì)量
邊緣推理的重要價(jià)值在于將AI能力下沉至數(shù)據(jù)源頭,解決云端模式的延遲痛點(diǎn)。倍聯(lián)德通過(guò)“模型輕量化+異構(gòu)計(jì)算”技術(shù),使邊緣設(shè)備具備單獨(dú)決策能力:針對(duì)工業(yè)機(jī)器人控制場(chǎng)景,倍聯(lián)德采用“剪枝+量化+知識(shí)蒸餾”三重壓縮技術(shù),將YOLOv5目標(biāo)檢測(cè)模型體積從140MB壓縮至3.2MB,推理速度提升12倍。在某電子廠的實(shí)際應(yīng)用中,邊緣設(shè)備可實(shí)時(shí)識(shí)別機(jī)械臂運(yùn)動(dòng)軌跡偏差,響應(yīng)延遲從200毫秒降至15毫秒,故障停機(jī)時(shí)間減少65%。倍聯(lián)德E500系列邊緣服務(wù)器集成Intel Xeon D處理器與NVIDIA Jetson AGX Orin GPU,支持動(dòng)態(tài)任務(wù)分配。在自動(dòng)駕駛測(cè)試中,該設(shè)備將激光雷達(dá)點(diǎn)云處理任務(wù)分配給GPU,將決策規(guī)劃任務(wù)分配給CPU,使單車每日處理數(shù)據(jù)量達(dá)10TB,同時(shí)功耗降低40%。機(jī)架式系統(tǒng)邊緣計(jì)算質(zhì)量