但是若保留所有的解釋變量,解釋變量之間也可能存在多重共線(xiàn)性,所以本文在相關(guān)性分析基礎(chǔ)上應(yīng)用LASSO算法來(lái)進(jìn)一步分析與選取特征[10]?;贚ASSO的特征選取在高維數(shù)據(jù)變量選擇方法的研究領(lǐng)域中,Tibshirani在1996年提出普通線(xiàn)性模型下的LeastAbsoluteShrinkageandSelectionOperate(LASSO)算法,LASSO算法就是在損失函數(shù)后面加上懲罰項(xiàng)(即L1正則項(xiàng)),L1正則項(xiàng)可以約束方程的稀疏性,這種稀疏性即可應(yīng)用于特征的選擇,這種方法與傳統(tǒng)的算法相比優(yōu)點(diǎn)在于可以在進(jìn)行連續(xù)的變量選擇的同時(shí)進(jìn)行模型參數(shù)估計(jì)[11]。而且LASSO算法可以有效解決解釋變量多重共線(xiàn)性的問(wèn)題,使得后續(xù)建立的模型擁有穩(wěn)定的性能。針對(duì)上一節(jié)相關(guān)性分析結(jié)果,采用R語(yǔ)言中的glmnet包實(shí)現(xiàn)的LASSO算法對(duì)關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行分析與特征選取。通過(guò)分析模型的Lambda解路徑圖可以發(fā)現(xiàn),隨著懲罰的力度加大,越來(lái)越多的變量系數(shù)會(huì)被壓縮為0,而那些在Lambda比較大時(shí)仍然擁有非零系數(shù)的變量就是越重要的解釋變量[12-13]。本文選取平均***誤差(MAE)作為評(píng)價(jià)指標(biāo),通過(guò)交叉驗(yàn)證得到**優(yōu)Lambda值,模型MAE與Lambda之間的關(guān)系如圖1所示。圖1中左側(cè)虛線(xiàn)是**佳Lambda取值(065)。使用非常簡(jiǎn)單,拖拖拽拽就能搞定! 智能化自動(dòng)建模,無(wú)需懂技術(shù)。帕累托數(shù)據(jù)挖掘團(tuán)隊(duì)
所以對(duì)人的要求就是要熟悉挖礦的方法和工具,或者至少知道在什么平臺(tái)上使用什么工具,解決什么需求。簡(jiǎn)單的說(shuō)就是負(fù)責(zé)拿到需求,然后拿到結(jié)果。大多數(shù)公司的數(shù)據(jù)挖掘工程師都比較被動(dòng)。比如BI讓你說(shuō)“我要獲取10年的銷(xiāo)售,需要知道每年的銷(xiāo)售情況和訂單情況”。這時(shí)候你需要對(duì)數(shù)據(jù)進(jìn)行采集、處理和整理、展示結(jié)果等,主要集中在算法上。數(shù)據(jù)挖掘就是通過(guò)數(shù)據(jù)的表象發(fā)現(xiàn)隱藏的蛛絲馬跡,找出看似無(wú)關(guān)事物背后隱藏的規(guī)律和聯(lián)系,并以此來(lái)理解或預(yù)測(cè)未知事物。很多人認(rèn)為數(shù)據(jù)挖掘需要掌握復(fù)雜高級(jí)的算法和技術(shù)開(kāi)發(fā)才能擅長(zhǎng)數(shù)據(jù)挖掘和分析,其實(shí)不然。在企業(yè)的實(shí)際運(yùn)作中,比較好的大數(shù)據(jù)挖掘工程師應(yīng)該是熟悉和了解業(yè)務(wù)的人。金融數(shù)據(jù)挖掘智能獲客為每個(gè)客戶(hù)定制個(gè)性化的產(chǎn)品推薦序列,提高成交率并優(yōu)化客戶(hù)體驗(yàn)。
也是很多創(chuàng)業(yè)公司遇到的較為棘手的問(wèn)題。在早期團(tuán)隊(duì)資金有限的情況下,如何更好地提升用戶(hù)體驗(yàn)?如果給用戶(hù)的推薦千篇一律、沒(méi)有亮點(diǎn),會(huì)使得用戶(hù)在一開(kāi)始就對(duì)產(chǎn)品失去了興趣,放棄使用。所以冷啟動(dòng)的問(wèn)題需要上線(xiàn)新產(chǎn)品認(rèn)真地對(duì)待和研究。在產(chǎn)品剛剛上線(xiàn),新用戶(hù)到來(lái)的時(shí)候,如果沒(méi)有他在應(yīng)用上的行為數(shù)據(jù),也無(wú)法預(yù)測(cè)其興趣。另外,當(dāng)新商品上架也會(huì)遇到冷啟動(dòng)的問(wèn)題,沒(méi)有收集到任何一個(gè)用戶(hù)對(duì)其瀏覽,點(diǎn)擊或者購(gòu)買(mǎi)的行為,也無(wú)從判斷將商品如何進(jìn)行推薦。所以在冷啟動(dòng)的時(shí)候要同時(shí)考慮用戶(hù)的冷啟動(dòng)和物品的冷啟動(dòng)。我總結(jié)了并延伸了項(xiàng)亮在《推薦系統(tǒng)實(shí)踐》中的一些方法,可以參考:a.提供熱門(mén)內(nèi)容,類(lèi)似剛才所介紹的熱度算法,將熱門(mén)的內(nèi)容優(yōu)先推給用戶(hù)。b.利用用戶(hù)注冊(cè)信息,可以收集人口統(tǒng)計(jì)學(xué)的一些特征,如性別、國(guó)籍、學(xué)歷、居住地來(lái)預(yù)測(cè)用戶(hù)的偏好,當(dāng)然在極度強(qiáng)調(diào)用戶(hù)體驗(yàn)的***,注冊(cè)過(guò)程的過(guò)于繁瑣也會(huì)影響到用戶(hù)的轉(zhuǎn)化率,所以另外一種方式更加簡(jiǎn)單且有效,即利用用戶(hù)社交網(wǎng)絡(luò)賬號(hào)授權(quán)登陸,導(dǎo)入社交網(wǎng)站上的好友信息或者一些行為數(shù)據(jù)。c.在用戶(hù)登錄時(shí)收集對(duì)物品的反饋,了解用戶(hù)興趣,推送相似的物品。d.在一開(kāi)始引入**知識(shí),建立知識(shí)庫(kù)、物品相關(guān)度表。
描述性的,無(wú)監(jiān)督的學(xué)習(xí),描述性分析是指分析具有多種屬性的數(shù)據(jù)集,找出潛在的模式并進(jìn)行分類(lèi)。描述性分析是一個(gè)無(wú)監(jiān)督的學(xué)習(xí)過(guò)程。與監(jiān)督學(xué)習(xí)不同,無(wú)監(jiān)督學(xué)習(xí)算法沒(méi)有參考指標(biāo),需要結(jié)合業(yè)務(wù)經(jīng)驗(yàn)來(lái)判斷數(shù)據(jù)分類(lèi)是否正確。無(wú)監(jiān)督學(xué)習(xí)耗時(shí)長(zhǎng),對(duì)建模者的專(zhuān)業(yè)素質(zhì)要求較高。在數(shù)據(jù)挖掘建模中,定義標(biāo)簽是主題視角。比如營(yíng)銷(xiāo)預(yù)測(cè)模型中客戶(hù)是否回復(fù),是建模者自己設(shè)定的規(guī)則。這個(gè)規(guī)則可能是在收到營(yíng)銷(xiāo)消息后的三天內(nèi)注冊(cè)一個(gè)賬號(hào)并生成訂單。無(wú)論電商、新媒體App渠道轉(zhuǎn)化分析器可以直觀分析不同渠道不同階段引流及獲客轉(zhuǎn)化率,優(yōu)化運(yùn)營(yíng)及業(yè)務(wù)流程。
機(jī)器學(xué)習(xí)(Machine learning)是一種從數(shù)據(jù)中自動(dòng)分析并獲取規(guī)則,并利用規(guī)則預(yù)測(cè)未知數(shù)據(jù)的算法。換句話(huà)說(shuō),機(jī)器學(xué)習(xí)就是把現(xiàn)實(shí)生活中的問(wèn)題抽象成一個(gè)數(shù)學(xué)模型,用數(shù)學(xué)方法求解這個(gè)數(shù)學(xué)模型,從而解決現(xiàn)實(shí)生活中的問(wèn)題。數(shù)據(jù)挖掘受到許多學(xué)科的影響,包括數(shù)據(jù)庫(kù)、機(jī)器學(xué)習(xí)、統(tǒng)計(jì)學(xué)、領(lǐng)域知識(shí)和模式識(shí)別。簡(jiǎn)而言之,對(duì)于數(shù)據(jù)挖掘,數(shù)據(jù)庫(kù)提供數(shù)據(jù)存儲(chǔ)技術(shù),機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)提供數(shù)據(jù)分析技術(shù)。統(tǒng)計(jì)學(xué)往往忽略了實(shí)際效用,癡迷于理論之美。所以統(tǒng)計(jì)學(xué)提供的大部分技術(shù),必須在機(jī)器學(xué)習(xí)領(lǐng)域進(jìn)一步研究,成為機(jī)器學(xué)習(xí)算法,才能進(jìn)入數(shù)據(jù)挖掘領(lǐng)域。非常好用! 專(zhuān)業(yè)級(jí)分析,您身邊的智能算法**。傳統(tǒng)零售數(shù)據(jù)挖掘功能
彈性成本:按需使用,不需運(yùn)維、不養(yǎng)團(tuán)隊(duì)、節(jié)省高額咨詢(xún)費(fèi)!帕累托數(shù)據(jù)挖掘團(tuán)隊(duì)
線(xiàn)性回歸與歸因引擎:您想知道一個(gè)指標(biāo),如銷(xiāo)量、利潤(rùn)、活躍度,受哪些因素影響?哪些有正面作用?哪些無(wú)效或有反作用?因素變化后指標(biāo)如何變化?可靠性如何?使用線(xiàn)性回歸與歸因引擎探索原因并預(yù)測(cè)未知。只需片刻,即可處理多達(dá)200萬(wàn)條數(shù)據(jù),并將圖文并茂的報(bào)告呈現(xiàn)眼前。制定面向未來(lái)的策略,提高勝算。您想知道一個(gè)指標(biāo),如銷(xiāo)量、利潤(rùn)、活躍度,受哪些因素影響?哪些有正面作用?哪些無(wú)效或有反作用?因素變化后指標(biāo)如何變化?可靠性如何?停止猜想,開(kāi)始洞察?;谙冗M(jìn)的“暖榕敏捷數(shù)據(jù)挖掘系統(tǒng)——線(xiàn)性回歸與歸因分析引擎”:?自動(dòng)建模技術(shù)建立線(xiàn)性回歸或廣義回歸模型,并根據(jù)預(yù)設(shè)的因素預(yù)測(cè)未知的取值;?自動(dòng)進(jìn)行歸因分析,了解哪些因素產(chǎn)生了哪些影響,以及這些影響的可信度;?基于共線(xiàn)性分析,挖掘不同因素之間的關(guān)聯(lián)性和耦合性。帕累托數(shù)據(jù)挖掘團(tuán)隊(duì)
上海暖榕智能科技有限責(zé)任公司是一家集研發(fā)、生產(chǎn)、咨詢(xún)、規(guī)劃、銷(xiāo)售、服務(wù)于一體的服務(wù)型企業(yè)。公司成立于2019-12-11,多年來(lái)在暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案行業(yè)形成了成熟、可靠的研發(fā)、生產(chǎn)體系。在孜孜不倦的奮斗下,公司產(chǎn)品業(yè)務(wù)越來(lái)越廣。目前主要經(jīng)營(yíng)有暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等產(chǎn)品,并多次以數(shù)碼、電腦行業(yè)標(biāo)準(zhǔn)、客戶(hù)需求定制多款多元化的產(chǎn)品。上海暖榕智能科技有限責(zé)任公司每年將部分收入投入到暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品開(kāi)發(fā)工作中,也為公司的技術(shù)創(chuàng)新和人材培養(yǎng)起到了很好的推動(dòng)作用。公司在長(zhǎng)期的生產(chǎn)運(yùn)營(yíng)中形成了一套完善的科技激勵(lì)政策,以激勵(lì)在技術(shù)研發(fā)、產(chǎn)品改進(jìn)等。上海暖榕智能科技有限責(zé)任公司嚴(yán)格規(guī)范暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案產(chǎn)品管理流程,確保公司產(chǎn)品質(zhì)量的可控可靠。公司擁有銷(xiāo)售/售后服務(wù)團(tuán)隊(duì),分工明細(xì),服務(wù)貼心,為廣大用戶(hù)提供滿(mǎn)意的服務(wù)。