個(gè)性化數(shù)據(jù)挖掘工具有哪些

來源: 發(fā)布時(shí)間:2023-06-16

數(shù)據(jù)挖掘是一項(xiàng)重要的技術(shù),它可以幫助企業(yè)從海量數(shù)據(jù)中挖掘出有價(jià)值的信息,為企業(yè)決策提供支持。我們公司是一家專注于數(shù)據(jù)挖掘的企業(yè),我們的重點(diǎn)產(chǎn)品就是數(shù)據(jù)挖掘。我們的數(shù)據(jù)挖掘技術(shù)可以幫助企業(yè)快速、準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢,從而為企業(yè)提供決策支持。我們的數(shù)據(jù)挖掘技術(shù)可以應(yīng)用于各個(gè)領(lǐng)域,包括金融、醫(yī)療、教育、電商等等。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點(diǎn):1.高效性:我們的數(shù)據(jù)挖掘技術(shù)可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析的效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢,為企業(yè)提供準(zhǔn)確的決策支持。3.靈活性:我們的數(shù)據(jù)挖掘技術(shù)可以根據(jù)不同的需求進(jìn)行定制化開發(fā),滿足企業(yè)不同的數(shù)據(jù)分析需求。4.可視化:我們的數(shù)據(jù)挖掘產(chǎn)品可以將數(shù)據(jù)分析結(jié)果以圖表等形式進(jìn)行展示,讓企業(yè)更直觀地了解數(shù)據(jù)分析結(jié)果。數(shù)據(jù)驅(qū)動(dòng),觸手可及。助力快速提升智能化水平,提高洞察力。個(gè)性化數(shù)據(jù)挖掘工具有哪些

    177.[10]趙東波.線性回歸模型中多重共線性問題的研究[D].錦州:渤海大學(xué),2017.[11]李鋒,蓋玉潔,盧一強(qiáng).測量誤差模型的自適應(yīng)LASSO變量選擇方法研究[J].中國科學(xué):數(shù)學(xué),2014,44(9):983-1006.[12]劉曉寧.基于Lasso特征選擇的方法比較[J].安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報(bào),2014,13(1):26-30.[13]李春紅,吳英,覃朝勇.基于LASSO變量選擇方法的網(wǎng)絡(luò)廣告點(diǎn)擊率預(yù)測模型研究[J].數(shù)理統(tǒng)計(jì)與管理,2016,35(5):803-809.[14]郭貔,王力,郝元濤.基于LASSO回歸模型與百度搜索數(shù)據(jù)構(gòu)建的流感**預(yù)測系統(tǒng)[J].中國衛(wèi)生統(tǒng)計(jì),2017,34(2):186-191.[15]崔東佳.大數(shù)據(jù)時(shí)代背景下的品牌汽車銷量預(yù)測的實(shí)證研究[D].開封:河南大學(xué),2014.[16]田銳鋒.用季節(jié)**乘模型預(yù)測奧迪汽車在華銷量[J].統(tǒng)計(jì)與管理,2016(8):70-71.(收稿日期:2018-04-03)作者簡介:謝天保(1966-),男,博士,副教授,主要研究方向:數(shù)據(jù)挖掘、電子商務(wù)與決策支持。崔田(1991-),通信作者,男,碩士研究生,主要研究方向:數(shù)據(jù)挖掘、電子商務(wù)。E-mail:@。線上零售數(shù)據(jù)挖掘常見問題我們的原則始終如一:不僅是數(shù)據(jù)挖掘,更是價(jià)值挖掘。

為什么選擇暖榕?豐富的數(shù)據(jù)接入。對(duì)于SaaS服務(wù),您只需將電子表格或文本文件加載并上傳。對(duì)于本地部署,支持?jǐn)?shù)據(jù)庫接口(如MySQL、Oracle、SQLserver)、文件服務(wù)器(如FTP)及云(如Hive、Hbase);簡單的操作?;谙冗M(jìn)的自動(dòng)處理技術(shù),屏蔽掉繁瑣的算法細(xì)節(jié)。您無需任何算法或IT知識(shí),只需簡單調(diào)整幾個(gè)參數(shù),即可獲得優(yōu)良的挖掘結(jié)果。這意味著更低的使用門檻和更少的人工干預(yù),讓您更專注于業(yè)務(wù)本身的價(jià)值;所見即所知。執(zhí)行因果關(guān)系檢驗(yàn)、影響因素分析、相關(guān)性檢驗(yàn)、趨勢預(yù)測、誤差分析、擬合優(yōu)度檢驗(yàn)、蒙特卡羅仿真等步驟*,并以業(yè)務(wù)的眼光和易于理解的方式展現(xiàn)。從便捷的SaaS到專有計(jì)算系統(tǒng)。您可以根據(jù)業(yè)務(wù)需要,選擇適合的服務(wù)方式:如果您希望靈活付費(fèi)并立即獲得見解:請(qǐng)使用SaaS版云計(jì)算引擎;如果云計(jì)算引擎不能有效處理您的數(shù)據(jù):請(qǐng)與我們聯(lián)系,我們將為您提供個(gè)性化的解決方案;如果您的數(shù)據(jù)量非常大,或希望使用一組引擎:請(qǐng)與我們聯(lián)系進(jìn)行引擎開發(fā)和部署;如果您有特殊功能需要實(shí)現(xiàn),或要滿足嚴(yán)格的數(shù)據(jù)合規(guī):請(qǐng)與我們聯(lián)系進(jìn)行本地部署。

    以“大眾”為例展示各模型測試集的預(yù)測值與實(shí)際值對(duì)比如圖2所示。其中可以看出LASOO線性回歸模型(圖(b))及支持向量回歸模型(圖(c))的預(yù)測精度明顯優(yōu)于ARIMA模型(圖(a)),ARIMA模型雖然能夠預(yù)測銷量的基本趨勢,但整體預(yù)測效果比較差,而且以上三種模型的峰值敏感度都較低,即對(duì)峰值的預(yù)測誤差均比較大。通過與隨機(jī)森林模型(圖(d))進(jìn)行對(duì)比,可以清晰直觀地看出,隨機(jī)森林模型與其他模型相比在峰值預(yù)測準(zhǔn)確度上有明顯差異,顯然隨機(jī)森林模型對(duì)于峰值和整體預(yù)測的結(jié)果都更精確。由此可以得出結(jié)論,針對(duì)汽車品牌粒度的月度銷量預(yù)測問題,建立基于網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征的隨機(jī)森林模型是一種切實(shí)可行的方案。3結(jié)論本文以品牌汽車銷量為研究對(duì)象,通過關(guān)鍵詞的選取及拓展,將相關(guān)性分析與基于LASSO的特征選擇相結(jié)合,**終篩選出針對(duì)不同品牌汽車的網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征,在解決多重共線性及減少過擬合的基礎(chǔ)上保留**有效的數(shù)據(jù),然后分別建立了傳統(tǒng)時(shí)間序列模型及三種機(jī)器學(xué)習(xí)模型,通過對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析,發(fā)現(xiàn)機(jī)器學(xué)習(xí)模型的預(yù)測效果均有***優(yōu)勢,其中隨機(jī)森林模型預(yù)測性能**優(yōu)。數(shù)據(jù)挖掘從未如此簡單。

    本文提出的基于網(wǎng)絡(luò)搜索數(shù)據(jù)的預(yù)測方法可以利用前期網(wǎng)絡(luò)搜索數(shù)據(jù)預(yù)測后續(xù)汽車銷量,而相應(yīng)品牌的汽車生產(chǎn)廠商可以根據(jù)預(yù)測結(jié)果及時(shí)調(diào)整企業(yè)的生產(chǎn)和營銷策略。模型的可靠性檢驗(yàn)及推廣應(yīng)用是接下來的研究方向。參考文獻(xiàn)[1]中國汽車工業(yè)協(xié)會(huì).中國汽車工業(yè)發(fā)展年度報(bào)告(2016)[M].北京:社會(huì)科學(xué)文獻(xiàn)出版社,2016.[2]黃琦.基于灰色理論的汽車銷售量預(yù)測研究[J].機(jī)械制造,2013,51(4):78-80.[3]胡彥君.ARIMA模型在汽車銷量預(yù)測中的應(yīng)用及SAS實(shí)現(xiàn)[J].河北企業(yè),2012(4):11-12.[4]王旭天.基于BP神經(jīng)網(wǎng)絡(luò)的我國汽車銷量預(yù)測分析[D].上海:東華大學(xué),2016.[5]袁慶玉,彭賡,劉穎,等.基于網(wǎng)絡(luò)關(guān)鍵詞搜索數(shù)據(jù)的汽車銷量預(yù)測研究[J].管理學(xué)家(學(xué)術(shù)版),2011(1):12-24.[6]孔令頂.基于互聯(lián)網(wǎng)搜索量的大眾途觀汽車銷量預(yù)測研究[J].時(shí)代金融,2015(30):222,226.[7]王守中,崔東佳,彭賡.基于Web搜索數(shù)據(jù)的寶馬汽車銷量預(yù)測研究[J].經(jīng)濟(jì)師,2013(12):22-24,26.[8]FANTAZZINID,[J]ernationalJournalofProductionEconomics,2015,170:97-135.[9]李憶,文瑞,楊立成.網(wǎng)絡(luò)搜索指數(shù)與汽車銷量關(guān)系研究——基于文本挖掘的關(guān)鍵詞獲?。跩].現(xiàn)代情報(bào),2016,36(8):131-136。彈性成本:按需使用,不需運(yùn)維、不養(yǎng)團(tuán)隊(duì)、節(jié)省高額咨詢費(fèi)!個(gè)性化數(shù)據(jù)挖掘工具有哪些

無論您來自什么行業(yè),數(shù)據(jù)驅(qū)動(dòng)將觸手可及,幫您緊跟時(shí)代和產(chǎn)業(yè)升級(jí)。個(gè)性化數(shù)據(jù)挖掘工具有哪些

數(shù)據(jù)挖掘是一種利用大數(shù)據(jù)技術(shù)來發(fā)現(xiàn)隱藏在數(shù)據(jù)背后的有價(jià)值信息的方法。它可以幫助企業(yè)更好地了解市場和客戶需求,優(yōu)化產(chǎn)品和服務(wù),提高競爭力。在當(dāng)今信息化時(shí)代,數(shù)據(jù)挖掘已經(jīng)成為了企業(yè)發(fā)展的重要手段。通過對(duì)海量數(shù)據(jù)的分析和挖掘,企業(yè)可以更好地了解市場和客戶需求,優(yōu)化產(chǎn)品和服務(wù),提高競爭力。數(shù)據(jù)挖掘技術(shù)可以幫助企業(yè)發(fā)現(xiàn)潛在的客戶群體,預(yù)測市場趨勢,提高銷售額和利潤率。數(shù)據(jù)挖掘技術(shù)的應(yīng)用范圍非常,包括金融、醫(yī)療、電商、物流等多個(gè)領(lǐng)域。在金融領(lǐng)域,數(shù)據(jù)挖掘可以幫助銀行和保險(xiǎn)公司識(shí)別風(fēng)險(xiǎn),預(yù)測市場趨勢,提高投資收益。個(gè)性化數(shù)據(jù)挖掘工具有哪些

上海暖榕智能科技有限責(zé)任公司位于聯(lián)航路1588弄(浦江鎮(zhèn)481街坊6/2丘)1幢技術(shù)中心主樓108室,是一家專業(yè)的人工智能理論與算法軟件開發(fā),大數(shù)據(jù)服務(wù),軟件即服務(wù)(SaaS),數(shù)據(jù)分析與挖掘整體解決方案,經(jīng)營性互聯(lián)網(wǎng)文化信息服務(wù),信息系統(tǒng)集成和物聯(lián)網(wǎng)技術(shù)服務(wù),信息技術(shù)咨詢服務(wù),社會(huì)經(jīng)濟(jì)咨詢【依法須經(jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營活動(dòng)?!抗尽I(yè)的團(tuán)隊(duì)大多數(shù)員工都有多年工作經(jīng)驗(yàn),熟悉行業(yè)專業(yè)知識(shí)技能,致力于發(fā)展暖榕,暖榕智能的品牌。公司不僅*提供專業(yè)的人工智能理論與算法軟件開發(fā),大數(shù)據(jù)服務(wù),軟件即服務(wù)(SaaS),數(shù)據(jù)分析與挖掘整體解決方案,經(jīng)營性互聯(lián)網(wǎng)文化信息服務(wù),信息系統(tǒng)集成和物聯(lián)網(wǎng)技術(shù)服務(wù),信息技術(shù)咨詢服務(wù),社會(huì)經(jīng)濟(jì)咨詢【依法須經(jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營活動(dòng)。】,同時(shí)還建立了完善的售后服務(wù)體系,為客戶提供良好的產(chǎn)品和服務(wù)。誠實(shí)、守信是對(duì)企業(yè)的經(jīng)營要求,也是我們做人的基本準(zhǔn)則。公司致力于打造***的暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案。