自媒體數(shù)據(jù)挖掘報(bào)表

來源: 發(fā)布時(shí)間:2023-04-20

數(shù)據(jù)挖掘和OLAP具有一定的互補(bǔ)性。在根據(jù)數(shù)據(jù)挖掘的結(jié)果采取行動(dòng)之前,您可以檢查此類行動(dòng)對(duì)公司的影響。還有其他方法可以使用OLAP工具。這可以幫助您探索數(shù)據(jù),找出哪些變量對(duì)解決問題更重要,并找出異常值和相互影響的變量。這可以幫助您更好地理解您的數(shù)據(jù)并加快知識(shí)發(fā)現(xiàn)過程。數(shù)據(jù)挖掘并不是要取代傳統(tǒng)的統(tǒng)計(jì)分析方法。相反,它是統(tǒng)計(jì)分析方法的延伸和延續(xù)。大多數(shù)統(tǒng)計(jì)分析方法都建立在完善的數(shù)學(xué)理論和高超的技巧之上,預(yù)測(cè)精度尚可,但用戶要求很高。隨著計(jì)算機(jī)計(jì)算能力的不斷增強(qiáng),我們只能利用計(jì)算機(jī)強(qiáng)大的計(jì)算能力,用相對(duì)簡(jiǎn)單固定的方法來完成同樣的功能。數(shù)據(jù)挖掘是人工智能統(tǒng)計(jì)和技術(shù)的一種應(yīng)用,它把這些先進(jìn)復(fù)雜的技術(shù)綜合起來,使人們不必自己掌握這些技術(shù)就可以執(zhí)行相同的功能,而更專注于自己要解決的問題?;趥€(gè)性化推薦引擎,幫您為顧客推薦正確的商品。自媒體數(shù)據(jù)挖掘報(bào)表

    注:這里的CF=collaborativefiltering而這兩種類型的協(xié)同過濾都是要基于用戶行為來進(jìn)行。而除了協(xié)同過濾之外,還有基于內(nèi)容的推薦、基于知識(shí)的推薦、混合推薦等方式。物以類聚,人以群分。這句話很好地解釋了協(xié)同過濾這種方法的思想。亞馬遜網(wǎng)站上對(duì)圖書的推薦-基于Item-CF前一陣參加pmcaff的人工智能產(chǎn)品經(jīng)理的活動(dòng),主講人香港中文大學(xué)的湯曉鷗教授(目前人工智能視覺方面的前列**)說,目前機(jī)器視覺領(lǐng)域可以通過社交網(wǎng)絡(luò)照片或者個(gè)人相冊(cè)中的圖片的學(xué)習(xí),可以做到預(yù)測(cè)個(gè)人征信。與誰的合影,在什么地方拍照都成為了機(jī)器預(yù)測(cè)個(gè)人特征的判斷因素。這也是利用了“人以群分"的常識(shí),只是加上了高大上的機(jī)器視覺技術(shù)而已。機(jī)器學(xué)習(xí)與個(gè)性化推薦的關(guān)系什么是機(jī)器學(xué)習(xí)?《集群智慧編程》這本書里是這么解釋的:機(jī)器學(xué)習(xí)是人工智能領(lǐng)域中與算法相關(guān)的一個(gè)子域,它允許計(jì)算機(jī)不斷地進(jìn)行學(xué)習(xí)。大多數(shù)情況下,這相當(dāng)于將一組數(shù)據(jù)傳遞給算法,并由算法推斷出與這些數(shù)據(jù)的屬性相關(guān)的信息-借助這些信息,算法就能夠預(yù)測(cè)出未來有可能出現(xiàn)的其他數(shù)據(jù)。這種預(yù)測(cè)是完全有可能的,因?yàn)閹缀跛蟹请S機(jī)數(shù)據(jù)中,都會(huì)包含這樣或那樣的“模式(patterns)”。個(gè)性化數(shù)據(jù)挖掘品牌排行榜細(xì)致和充分的測(cè)試,保證可靠性;

    以“大眾”為例展示各模型測(cè)試集的預(yù)測(cè)值與實(shí)際值對(duì)比如圖2所示。其中可以看出LASOO線性回歸模型(圖(b))及支持向量回歸模型(圖(c))的預(yù)測(cè)精度明顯優(yōu)于ARIMA模型(圖(a)),ARIMA模型雖然能夠預(yù)測(cè)銷量的基本趨勢(shì),但整體預(yù)測(cè)效果比較差,而且以上三種模型的峰值敏感度都較低,即對(duì)峰值的預(yù)測(cè)誤差均比較大。通過與隨機(jī)森林模型(圖(d))進(jìn)行對(duì)比,可以清晰直觀地看出,隨機(jī)森林模型與其他模型相比在峰值預(yù)測(cè)準(zhǔn)確度上有明顯差異,顯然隨機(jī)森林模型對(duì)于峰值和整體預(yù)測(cè)的結(jié)果都更精確。由此可以得出結(jié)論,針對(duì)汽車品牌粒度的月度銷量預(yù)測(cè)問題,建立基于網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征的隨機(jī)森林模型是一種切實(shí)可行的方案。3結(jié)論本文以品牌汽車銷量為研究對(duì)象,通過關(guān)鍵詞的選取及拓展,將相關(guān)性分析與基于LASSO的特征選擇相結(jié)合,**終篩選出針對(duì)不同品牌汽車的網(wǎng)絡(luò)搜索數(shù)據(jù)關(guān)鍵特征,在解決多重共線性及減少過擬合的基礎(chǔ)上保留**有效的數(shù)據(jù),然后分別建立了傳統(tǒng)時(shí)間序列模型及三種機(jī)器學(xué)習(xí)模型,通過對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行分析,發(fā)現(xiàn)機(jī)器學(xué)習(xí)模型的預(yù)測(cè)效果均有***優(yōu)勢(shì),其中隨機(jī)森林模型預(yù)測(cè)性能**優(yōu)。

數(shù)據(jù)挖掘是一項(xiàng)重要的技術(shù),它可以幫助企業(yè)從海量數(shù)據(jù)中挖掘出有價(jià)值的信息,為企業(yè)決策提供支持。我們公司是一家專注于數(shù)據(jù)挖掘的企業(yè),我們的重點(diǎn)產(chǎn)品就是數(shù)據(jù)挖掘。我們的數(shù)據(jù)挖掘技術(shù)可以幫助企業(yè)快速、準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì),從而為企業(yè)提供決策支持。我們的數(shù)據(jù)挖掘技術(shù)可以應(yīng)用于各個(gè)領(lǐng)域,包括金融、醫(yī)療、教育、電商等等。我們的數(shù)據(jù)挖掘產(chǎn)品具有以下特點(diǎn):1.高效性:我們的數(shù)據(jù)挖掘技術(shù)可以快速處理大量數(shù)據(jù),提高數(shù)據(jù)分析的效率。2.準(zhǔn)確性:我們的數(shù)據(jù)挖掘技術(shù)可以準(zhǔn)確地分析數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì),為企業(yè)提供準(zhǔn)確的決策支持。3.靈活性:我們的數(shù)據(jù)挖掘技術(shù)可以根據(jù)不同的需求進(jìn)行定制化開發(fā),滿足企業(yè)不同的數(shù)據(jù)分析需求。4.可視化:我們的數(shù)據(jù)挖掘產(chǎn)品可以將數(shù)據(jù)分析結(jié)果以圖表等形式進(jìn)行展示,讓企業(yè)更直觀地了解數(shù)據(jù)分析結(jié)果。使用組合與推薦引擎,幫您深度挖掘商品的內(nèi)部關(guān)系!

    但是若保留所有的解釋變量,解釋變量之間也可能存在多重共線性,所以本文在相關(guān)性分析基礎(chǔ)上應(yīng)用LASSO算法來進(jìn)一步分析與選取特征[10]?;贚ASSO的特征選取在高維數(shù)據(jù)變量選擇方法的研究領(lǐng)域中,Tibshirani在1996年提出普通線性模型下的LeastAbsoluteShrinkageandSelectionOperate(LASSO)算法,LASSO算法就是在損失函數(shù)后面加上懲罰項(xiàng)(即L1正則項(xiàng)),L1正則項(xiàng)可以約束方程的稀疏性,這種稀疏性即可應(yīng)用于特征的選擇,這種方法與傳統(tǒng)的算法相比優(yōu)點(diǎn)在于可以在進(jìn)行連續(xù)的變量選擇的同時(shí)進(jìn)行模型參數(shù)估計(jì)[11]。而且LASSO算法可以有效解決解釋變量多重共線性的問題,使得后續(xù)建立的模型擁有穩(wěn)定的性能。針對(duì)上一節(jié)相關(guān)性分析結(jié)果,采用R語言中的glmnet包實(shí)現(xiàn)的LASSO算法對(duì)關(guān)鍵詞搜索數(shù)據(jù)進(jìn)行分析與特征選取。通過分析模型的Lambda解路徑圖可以發(fā)現(xiàn),隨著懲罰的力度加大,越來越多的變量系數(shù)會(huì)被壓縮為0,而那些在Lambda比較大時(shí)仍然擁有非零系數(shù)的變量就是越重要的解釋變量[12-13]。本文選取平均***誤差(MAE)作為評(píng)價(jià)指標(biāo),通過交叉驗(yàn)證得到**優(yōu)Lambda值,模型MAE與Lambda之間的關(guān)系如圖1所示。圖1中左側(cè)虛線是**佳Lambda取值(065)。為每個(gè)客戶定制個(gè)性化的產(chǎn)品推薦序列,提高成交率并優(yōu)化客戶體驗(yàn)。線上數(shù)據(jù)挖掘工具有哪些

使用時(shí)序預(yù)測(cè)引擎,幫您預(yù)測(cè)未來。自媒體數(shù)據(jù)挖掘報(bào)表

隨著智能制造技術(shù)的不斷發(fā)展,數(shù)據(jù)挖掘技術(shù)在智能制造行業(yè)中的應(yīng)用也越來越。數(shù)據(jù)挖掘可以通過分析生產(chǎn)過程中的傳感器數(shù)據(jù)、設(shè)備運(yùn)行數(shù)據(jù)、產(chǎn)品質(zhì)量數(shù)據(jù)等數(shù)據(jù),為制造企業(yè)提供更加的生產(chǎn)調(diào)度和質(zhì)量控制。同時(shí),數(shù)據(jù)挖掘還可以幫助制造企業(yè)進(jìn)行產(chǎn)品設(shè)計(jì)和市場(chǎng)分析,為企業(yè)提供更加科學(xué)的產(chǎn)品開發(fā)和市場(chǎng)營(yíng)銷策略。數(shù)據(jù)挖掘在電商行業(yè)的應(yīng)用,隨著電商行業(yè)的發(fā)展,數(shù)據(jù)挖掘技術(shù)被廣泛應(yīng)用于電商平臺(tái)。通過對(duì)用戶行為、購(gòu)買記錄等數(shù)據(jù)進(jìn)行分析,可以幫助電商平臺(tái)更好地了解用戶需求,提高銷售轉(zhuǎn)化率,優(yōu)化商品推薦等。同時(shí),數(shù)據(jù)挖掘還可以幫助電商平臺(tái)預(yù)測(cè)銷售趨勢(shì),優(yōu)化庫存管理,提高運(yùn)營(yíng)效率。自媒體數(shù)據(jù)挖掘報(bào)表

上海暖榕智能科技有限責(zé)任公司是國(guó)內(nèi)一家多年來專注從事暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案的老牌企業(yè)。公司位于聯(lián)航路1588弄(浦江鎮(zhèn)481街坊6/2丘)1幢技術(shù)中心主樓108室,成立于2019-12-11。公司的產(chǎn)品營(yíng)銷網(wǎng)絡(luò)遍布國(guó)內(nèi)各大市場(chǎng)。公司主要經(jīng)營(yíng)暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案等產(chǎn)品,我們依托高素質(zhì)的技術(shù)人員和銷售隊(duì)伍,本著誠(chéng)信經(jīng)營(yíng)、理解客戶需求為經(jīng)營(yíng)原則,公司通過良好的信譽(yù)和周到的售前、售后服務(wù),贏得用戶的信賴和支持。暖榕,暖榕智能嚴(yán)格按照行業(yè)標(biāo)準(zhǔn)進(jìn)行生產(chǎn)研發(fā),產(chǎn)品在按照行業(yè)標(biāo)準(zhǔn)測(cè)試完成后,通過質(zhì)檢部門檢測(cè)后推出。我們通過全新的管理模式和周到的服務(wù),用心服務(wù)于客戶。暖榕,暖榕智能秉承著誠(chéng)信服務(wù)、產(chǎn)品求新的經(jīng)營(yíng)原則,對(duì)于員工素質(zhì)有嚴(yán)格的把控和要求,為暖榕敏捷數(shù)據(jù)挖掘系統(tǒng),數(shù)據(jù)分析SaaS工具,數(shù)據(jù)挖掘解決方案行業(yè)用戶提供完善的售前和售后服務(wù)。