廣東中翔新材料簽約德米薩智能ERP加強(qiáng)企業(yè)管理水平
碩鋮工業(yè)簽約德米薩智能進(jìn)銷存系統(tǒng)提升企業(yè)管理水平
燊川實(shí)業(yè)簽約德米薩醫(yī)療器械管理軟件助力企業(yè)科學(xué)發(fā)展
森尼電梯簽約德米薩進(jìn)銷存系統(tǒng)優(yōu)化企業(yè)資源管控
喜報(bào)!熱烈祝賀德米薩通過國(guó)際CMMI3認(rèn)證
德米薩推出MES系統(tǒng)助力生產(chǎn)制造企業(yè)規(guī)范管理
德米薩醫(yī)療器械管理軟件通過上海市醫(yī)療器械行業(yè)協(xié)會(huì)評(píng)審認(rèn)證
德米薩ERP助力客戶成功對(duì)接中石化易派客平臺(tái)
選擇進(jìn)銷存軟件要考慮哪些因素
德米薩告訴您為什么說ERP系統(tǒng)培訓(xùn)很重要?
并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。實(shí)驗(yàn)結(jié)果與分析(1)樣本數(shù)據(jù)集選取實(shí)驗(yàn)評(píng)估使用了不同時(shí)期的惡意軟件和良性軟件樣本,包含了7871個(gè)良性軟件樣本和8269個(gè)惡意軟件樣本,其中4103個(gè)惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個(gè)惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個(gè)良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個(gè)良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計(jì)82697871(2)評(píng)價(jià)指標(biāo)及方法分類性能主要用兩個(gè)指標(biāo)來評(píng)估:準(zhǔn)確率和對(duì)數(shù)損失。準(zhǔn)確率測(cè)量所有預(yù)測(cè)中正確預(yù)測(cè)的樣本占總樣本的比例,*憑準(zhǔn)確率通常不足以評(píng)估預(yù)測(cè)的魯棒性,因此還需要使用對(duì)數(shù)損失。對(duì)數(shù)損失(logarithmicloss),也稱交叉熵?fù)p失(cross-entropyloss),是在概率估計(jì)上定義的,用于測(cè)量預(yù)測(cè)類別與真實(shí)類別之間的差距大小。負(fù)載測(cè)試證實(shí)系統(tǒng)最大承載量較宣傳數(shù)據(jù)低18%。東莞移動(dòng)軟件檢測(cè)報(bào)告
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。進(jìn)一步的,所述生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。進(jìn)一步的,所述從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,。呼市第三方軟件測(cè)評(píng)中心用戶隱私測(cè)評(píng)確認(rèn)數(shù)據(jù)采集范圍超出聲明條款3項(xiàng)。
先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征。特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,。
收藏查看我的收藏0有用+1已投票0軟件測(cè)試方法編輯鎖定本詞條由“科普**”科學(xué)百科詞條編寫與應(yīng)用工作項(xiàng)目審核。軟件測(cè)試是使用人工或自動(dòng)的手段來運(yùn)行或測(cè)定某個(gè)軟件系統(tǒng)的過程,其目的在于檢驗(yàn)它是否滿足規(guī)定的需求或弄清預(yù)期結(jié)果與實(shí)際結(jié)果之間的差別。[1]從是否關(guān)心軟件內(nèi)部結(jié)構(gòu)和具體實(shí)現(xiàn)的角度劃分,測(cè)試方法主要有白盒測(cè)試和黑盒測(cè)試。白盒測(cè)試方法主要有代碼檢査法、靜態(tài)結(jié)構(gòu)分析法、靜態(tài)質(zhì)量度量法、邏輯覆蓋法、基夲路徑測(cè)試法、域測(cè)試、符號(hào)測(cè)試、路徑覆蓋和程序變異。黑盒測(cè)試方法主要包括等價(jià)類劃分法、邊界值分析法、錯(cuò)誤推測(cè)法、因果圖法、判定表驅(qū)動(dòng)法、正交試驗(yàn)設(shè)計(jì)法、功能圖法、場(chǎng)景法等。[1]從是否執(zhí)行程序的角度劃分,測(cè)試方法又可分為靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試。靜態(tài)測(cè)試包括代碼檢査、靜態(tài)結(jié)構(gòu)分析、代碼質(zhì)量度量等。動(dòng)態(tài)測(cè)試由3部分組成:構(gòu)造測(cè)試實(shí)例、執(zhí)行程序和分析程序的輸出結(jié)果。艾策醫(yī)療檢測(cè)中心為體外診斷試劑提供全流程合規(guī)性驗(yàn)證服務(wù)。
坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對(duì)數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。無障礙測(cè)評(píng)認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。CNAS軟件測(cè)評(píng)中心
2025 年 IT 趨勢(shì)展望:深圳艾策的五大技術(shù)突破。東莞移動(dòng)軟件檢測(cè)報(bào)告
且4個(gè)隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第二個(gè)神經(jīng)元的隱含層個(gè)數(shù)是10,且2個(gè)隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率等于。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,中間融合模型的準(zhǔn)確率變化曲線如圖17所示,模型的對(duì)數(shù)損失變化曲線如圖18所示。從圖17和圖18可以看出,當(dāng)epoch值從0增加到20過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從30到50的過程中,中間融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本保持不變,訓(xùn)練對(duì)數(shù)損失緩慢下降;綜合分析圖17和圖18的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。中間融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖19所示,規(guī)范化后的混淆矩陣如圖20所示。中間融合模型的roc曲線如圖21所示,auc值為,已經(jīng)非常接近auc的**優(yōu)值1。(7)實(shí)驗(yàn)結(jié)果比對(duì)為了綜合評(píng)估本實(shí)施例提出融合方案的綜合性能。東莞移動(dòng)軟件檢測(cè)報(bào)告