黃銅(如HAl77-2)在含氯環(huán)境中會發(fā)生選擇性腐蝕,鋅元素優(yōu)先溶出,導致材料強度喪失。某電廠凝汽器銅管在Cl?=400mg/L條件下,3年內壁厚減薄達40%,被迫提前更換。這種腐蝕還會造成管壁粗糙度增加,使換熱效率下降25%以上,直接影響機組經濟運行。
循環(huán)水常用的有機膦酸類緩蝕劑(如HEDP)會與Cl?競爭金屬表面吸附位點。實驗表明,當Cl?濃度從100mg/L升至500mg/L時,HEDP的緩蝕效率從92%降至58%。某化工廠不得不將藥劑投加量提高2倍(年成本增加¥180萬)才能維持防護效果,且高濃度藥劑又帶來環(huán)保風險。 氯污染使冷卻塔填料壽命縮短。遼寧數(shù)據(jù)中心除氯需求
金屬設備的腐蝕加速氯離子(Cl?)是引發(fā)金屬腐蝕的主要促進因子之一。其離子半徑0.181nm,可穿透不銹鋼鈍化膜缺陷處,與基體金屬(如Fe2?)形成可溶性氯化物,導致:碳鋼:Cl?>300mg/L時點蝕速率超1mm/年(較純水環(huán)境快20倍)不銹鋼:304不銹鋼在Cl?>200mg/L+60℃時應力腐蝕開裂(SCC)風險激增銅合金:誘發(fā)脫鋅腐蝕,黃銅管3年壁厚損失可達40%某濱海電廠實測數(shù)據(jù)顯示,循環(huán)水Cl?從100mg/L升至500mg/L后,碳鋼換熱器更換頻率由5年/臺縮短至1.5年/臺,單臺設備更換成本超¥80萬。寧夏除氯除硬氯離子腐蝕金屬設備,需嚴格控制濃度。
通過排放高氯循環(huán)水并補充新水的置換法,在水資源緊張地區(qū)經濟性差。以10000m3/h系統(tǒng)為例,每降低100mg/L Cl?需排放20%水量,年耗水量增加50萬噸。該方法還存在以下問題:1)無法應對突發(fā)性氯污染(如工藝介質泄漏);2)排放水可能含有其他污染物,需額外處理;3)頻繁補水導致系統(tǒng)水質波動,影響水處理藥劑效果。某電廠實踐表明,采用該法后年運行成本增加120萬元。
采用強堿陰樹脂處理循環(huán)水時面臨多重挑戰(zhàn):1)高硬度(Ca2?>500mg/L)會導致樹脂鈣污染,交換容量半年內下降40%;2)再生產生的含鹽廢水(NaCl 8-10%)需專門處理;3)樹脂氧化破裂后釋放季銨基團可能形成致病物NDMA。某化工廠運行數(shù)據(jù)顯示,處理Cl?=300mg/L的循環(huán)水時,噸水處理成本達¥18-22,是其他方法的3-5倍。
對于養(yǎng)魚愛好者而言,自來水除氯是保障魚兒健康的關鍵一步。自來水中的氯氣就像是隱藏在暗處的 “毒藥”,時刻威脅著魚類的健康。它會逐漸侵蝕魚體表面的粘液保護層,使魚失去這層重要的保護屏障,進而極易受到細菌、病毒等有害微生物的侵害。例如,柱狀黃桿菌就會趁虛而入,引發(fā)爛鰓、赤皮等讓養(yǎng)魚人頭疼的疾病。據(jù)相關實驗表明,當水中氯氣濃度達到 0.1ppm 時,對于一些較為敏感的魚類來說,就可能是致命的。所以,在養(yǎng)魚之前,一定要對自來水進行妥善的除氯處理,為魚兒打造一個安全舒適的生存環(huán)境。脈沖電解可減少副產物生成。
化學沉淀法通過投加Ag?、Hg2?或Cu?等金屬離子與Cl?形成難溶鹽。例如,AgNO? + Cl? → AgCl↓ + NO??,Ksp(AgCl)=1.8×10?1?,理論去除率可達99%。但銀鹽成本高昂,實際中多采用鈣鹽(如Ca(OH)?)分步沉淀:先調pH>10.5使Mg2?生成Mg(OH)?,再通CO?降低pH至8.5沉淀CaCO?吸附Cl?。該法適用于氯離子濃度>1000mg/L的廢水,但污泥產量大。
氯離子富集,容易造成破壞系統(tǒng)水平衡。遼寧數(shù)據(jù)中心除氯需求
氯離子是微生物生長的必需元素,其存在會明顯加速硫酸鹽還原菌(SRB)等腐蝕性菌群的繁殖。某煉油廠循環(huán)水系統(tǒng)在Cl?>400mg/L時,生物膜厚度增加3倍,垢下Cl?濃度可達本體水的20倍,造成碳鋼設備點蝕速率高達3mm/a。更嚴重的是,常規(guī)殺菌劑對生物膜內菌群效果有限,必須配合物理清洗才能控制。
PVC材質冷卻塔填料在Cl?>500mg/L的環(huán)境中,分子鏈中的C-Cl鍵會逐漸斷裂,5年后抗拉強度下降40%。某電廠曾發(fā)生填料大面積坍塌事故,直接損失¥300萬。雖然玻璃鋼填料耐氯性更好,但成本是PVC的3倍,且安裝維護要求更高。 遼寧數(shù)據(jù)中心除氯需求