光源,尤其是高功率LED光源,在工作過程中會產(chǎn)生熱量。有效的散熱管理是保障光源亮度穩(wěn)定性、顏色一致性、可靠性和長壽命(數(shù)萬小時)的關(guān)鍵。重要挑戰(zhàn)在于:LED結(jié)溫升高會導致光效下降(光衰)、波長偏移(色溫變化)、壽命急劇縮短。散熱設(shè)計遵循從熱源到環(huán)境的路徑:LED芯片->基板(MCPCB-MetalCorePCB):使用高導熱金屬(鋁、銅)作為基板,快速導出芯片熱量;熱界面材料(TIM):如導熱硅脂/墊片,填充基板與散熱器間的微間隙,降低熱阻;散熱器(Heatsink):重點部件,通常由鋁鰭片構(gòu)成,通過增大表面積(自然對流)或強制風冷(風扇)將熱量散發(fā)到空氣中;外殼結(jié)構(gòu):有時整個光源外殼參與散熱(如鋁型材殼體)。設(shè)計要點包括:選用低熱阻材料;優(yōu)化散熱器尺寸、鰭片密度與形狀;保證良好空氣流通(自然對流需空間,強制風冷需風扇選型與防塵);控制環(huán)境溫度;避免光源密集堆積。對于智能光源,常內(nèi)置溫度傳感器和過溫保護電路,當溫度超過閾值時自動降低亮度或關(guān)閉以防止損壞。良好的散熱不僅保障了光源自身的MTBF(平均無故障時間),更確保了在整個生命周期內(nèi)圖像質(zhì)量(亮度、顏色)的穩(wěn)定可靠,減少系統(tǒng)校準維護頻率,是工業(yè)級可靠性的基礎(chǔ)。漸變照明凸顯曲面0.1mm高度差,誤判率降低18%。陽泉環(huán)形低角度光源面陣同軸
點光源與光纖導光:精細聚焦與微距應用在機器視覺中,當需要極高亮度、極小光斑或深入狹窄空間進行照明時,點光源(SpotLight)結(jié)合光纖導光技術(shù)成為關(guān)鍵解決方案。點光源通常指能產(chǎn)生高度匯聚光束的光源單元,而光纖(如玻璃光纖束或液體光導管)則負責將光線從光源發(fā)生器高效、靈活地傳導至遠端需要照明的微小區(qū)域。這種組合的重要優(yōu)勢在于:極高的光強密度:可將強大光能匯聚于微小目標點;靈活性與可達性:光纖非常細小柔韌,可輕易伸入設(shè)備內(nèi)部、深孔、縫隙或復雜結(jié)構(gòu)周圍進行照明,不受空間限制;熱隔離:光源發(fā)生器(常為高功率鹵素燈或LED)可放置在遠離檢測點的地方,避免熱量影響敏感的被測物或光學元件;光斑形狀可控:通過在光纖輸出端加裝微型透鏡或光闌,可精確控制光斑的大?。◤暮撩准壍絹喓撩准墸⑿螤睿▓A點、線、方框)和照射角度。點光源光纖照明在微電子(芯片、引線鍵合、焊點檢測)、精密機械(鐘表零件、微型齒輪)、生物醫(yī)學(內(nèi)窺鏡輔助)、科研顯微以及需要局部高亮照明的場景(如微小劃痕、特定標記點檢查)中不可或缺。選擇時需平衡光強需求、光斑尺寸、光纖長度(光損)和光源的穩(wěn)定性。陽泉環(huán)形低角度光源面陣同軸短波藍光激發(fā)防偽標記,實現(xiàn)藥品包裝每秒50件篩查。
同軸漫射光源(DomeLight):解決高反光表面的利器面對具有鏡面或高度反光表面(如金屬、拋光塑料、鍍層、玻璃、光滑芯片)的物體時,傳統(tǒng)的直接照明會產(chǎn)生強烈的眩光(HotSpot),淹沒關(guān)鍵特征信息。同軸漫射光源,常被稱為穹頂光(DomeLight),是解決這一挑戰(zhàn)的有效方案。其重要設(shè)計是一個半球形的漫射內(nèi)腔,內(nèi)壁密布LED。光線經(jīng)半球內(nèi)壁的多次漫反射后,形成來自四面八方的、極其柔和且均勻的漫射光照射到被測物表面。這種照明方式的精髓在于:它將點光源或小范圍光源擴展為一個大面積的、近乎理想的“面光源”,突出減小了物體表面法線方向微小變化引起的光強劇烈波動。結(jié)果是,即使是高度反光的表面,也能呈現(xiàn)均勻的灰階,有效抑制眩光,同時清晰地顯現(xiàn)出表面細微的紋理變化、劃痕、凹坑、異物或字符,而不會被強烈的反射光斑掩蓋。穹頂光特別適用于檢查金屬加工件(車削、銑削、沖壓)、光滑注塑件、電子元件(芯片、連接器)、鏡片、珠寶等。選擇時需關(guān)注穹頂尺寸(匹配視場和工作距離)、開口大小、漫射材料均勻性以及光源亮度。其缺點是結(jié)構(gòu)相對較大,可能占用較多空間。
偏振光在機器視覺中的應用:消除反光與增強對比度偏振光技術(shù)是解決物體表面鏡面反射(眩光)和增強特定特征對比度的有效光學手段。其基本原理是利用偏振片控制光波的振動方向。典型應用模式有兩種:第一種是“光源+偏振片,相機鏡頭前加偏振片”:光源發(fā)出的非偏振光經(jīng)起偏器變?yōu)榫€偏振光照射物體。物體表面反射光包含鏡面反射(通常保持原偏振方向)和漫反射(偏振方向隨機)。相機鏡頭前的檢偏器若旋轉(zhuǎn)至與起偏器方向垂直,則可有效阻擋鏡面反射光,同時允許部分漫反射光通過,從而突出抑制眩光,使被眩光覆蓋的表面紋理、劃痕、印刷圖案等得以顯現(xiàn)。第二種是只相機鏡頭前加偏振片,用于過濾環(huán)境光中的偏振干擾。偏振照明特別適用于檢測光滑表面(金屬、玻璃、塑料、漆面)的劃痕、凹陷、異物、油污等。配置時需仔細調(diào)整光源與相機偏振片的相對角度(通常正交效果比較好),并考慮光線入射角的影響。雖然會增加成本并損失部分光強,但在解決棘手反光問題時效果突出。高均勻面光源檢測OLED壞點,靈敏度0.05cd/m2。
LED光源:主流之選及其技術(shù)優(yōu)勢發(fā)光二極管(LED)憑借其綜合性能優(yōu)勢,已成為機器視覺光源領(lǐng)域無可爭議的主流技術(shù)。其重要優(yōu)勢體現(xiàn)在多個層面:光譜純凈,可提供從紫外(UV)、可見光到紅外(IR)的多種單色或組合波長,精細匹配被測物特性或濾鏡需求;壽命極長(通常數(shù)萬小時),突出降低維護成本和停機風險;響應速度快(微秒級),完美適應高速生產(chǎn)線,可實現(xiàn)頻閃照明凍結(jié)運動物體;低功耗與低發(fā)熱,減少散熱負擔,簡化系統(tǒng)設(shè)計并提升能效;亮度高度可控且穩(wěn)定,通過電流調(diào)節(jié)實現(xiàn)精確調(diào)光,避免光強波動引入噪聲?,F(xiàn)代LED視覺光源常集成精密光學元件(透鏡、漫射板、偏振片)和結(jié)構(gòu)設(shè)計(如環(huán)形、條形、同軸、穹頂),形成多樣化的照明模式。其模塊化設(shè)計支持靈活組合與擴展,并能通過智能控制器實現(xiàn)多通道單獨編程控制,包括亮度、頻閃時序等,為復雜檢測需求提供強大支持。LED技術(shù)的持續(xù)進步(更高亮度、更小尺寸、更多波長選擇)進一步鞏固了其在機器視覺照明中的主導地位。可調(diào)角度條形光源適配傳送帶速度,滿足焊縫追蹤的實時成像需求。呼和浩特環(huán)形低角度光源環(huán)境環(huán)形
廣域漫反射照明覆蓋2m×1.5m區(qū)域,均勻度超90%。陽泉環(huán)形低角度光源面陣同軸
光源均勻性:概念、重要性及評估方法光源均勻性是衡量照明場光強分布一致性(均勻程度)的關(guān)鍵指標,對機器視覺檢測精度至關(guān)重要,尤其在進行定量測量(如尺寸、色度)或大面積檢測時。不均勻照明會導致圖像不同區(qū)域亮度差異:過亮區(qū)域可能飽和丟失細節(jié),過暗區(qū)域信噪比差難以分析,這種亮度梯度會被誤判為物體本身的特征變化(如厚度不均、顏色漸變),嚴重影響檢測結(jié)果的一致性和可靠性。均勻性通常定義為:Uniformity=[1-(Max-Min)/(Max+Min)]*100%,其中Max和Min是測量區(qū)域內(nèi)多個采樣點的亮度值。理想值為100%,工業(yè)應用中通常要求>80%甚至>90%。評估均勻性需要使用光強計或經(jīng)校準的參考相機,在設(shè)定的工作距離下,在有效照明區(qū)域內(nèi)按網(wǎng)格(如5x5或9x9)測量多個點的亮度值,然后計算。影響均勻性的因素眾多:LED個體的亮度/色溫差異、排列密度、光學設(shè)計(透鏡、漫射板)的質(zhì)量與老化、供電穩(wěn)定性、結(jié)構(gòu)遮擋、距離變化等。改善均勻性的方法包括:選用高質(zhì)均光板(如乳白亞克力、勻光膜)、優(yōu)化LED排布(增加密度、交錯排列)、采用積分球原理(穹頂光)、精確控制光源距離、定期校準維護。在系統(tǒng)設(shè)計階段就必須將均勻性作為重要參數(shù)進行驗證和優(yōu)化。
陽泉環(huán)形低角度光源面陣同軸