浮動(dòng)軸承的拓?fù)鋬?yōu)化與 3D 打印制造:借助拓?fù)鋬?yōu)化算法和 3D 打印技術(shù),實(shí)現(xiàn)浮動(dòng)軸承的結(jié)構(gòu)創(chuàng)新與性能提升。以軸承的承載能力和固有頻率為約束條件,以質(zhì)量較小化為目標(biāo),通過(guò)拓?fù)鋬?yōu)化算法去除冗余材料,得到材料分布好的復(fù)雜結(jié)構(gòu)。利用選擇性激光熔化(SLM)3D 打印技術(shù),使用鈦合金粉末直接成型,精度可達(dá) ±0.05mm。優(yōu)化后的浮動(dòng)軸承,重量減輕 40%,同時(shí)通過(guò)加強(qiáng)關(guān)鍵受力部位,承載能力提高 25%。在衛(wèi)星姿態(tài)控制電機(jī)應(yīng)用中,該軸承使電機(jī)整體重量降低,提升了衛(wèi)星的機(jī)動(dòng)性,且 3D 打印制造縮短了產(chǎn)品研發(fā)周期,降低了制造成本,為裝備的輕量化設(shè)計(jì)提供了新途徑。浮動(dòng)軸承采用碳納米管增強(qiáng)復(fù)合材料,在高負(fù)載下依然保持穩(wěn)定運(yùn)轉(zhuǎn)。天津渦輪浮動(dòng)軸承
浮動(dòng)軸承的智能流體調(diào)控與能量回收系統(tǒng):為提高浮動(dòng)軸承的能效,研發(fā)智能流體調(diào)控與能量回收系統(tǒng)。該系統(tǒng)通過(guò)壓力傳感器、流量傳感器實(shí)時(shí)監(jiān)測(cè)軸承的運(yùn)行參數(shù),利用智能算法調(diào)節(jié)潤(rùn)滑油的流量和壓力,實(shí)現(xiàn)按需潤(rùn)滑。同時(shí),在潤(rùn)滑油回路中安裝微型渦輪發(fā)電機(jī),當(dāng)潤(rùn)滑油高速流動(dòng)時(shí),驅(qū)動(dòng)渦輪發(fā)電,將部分機(jī)械能轉(zhuǎn)化為電能存儲(chǔ)在超級(jí)電容中。在大型船舶推進(jìn)系統(tǒng)浮動(dòng)軸承應(yīng)用中,智能流體調(diào)控使?jié)櫥拖臏p少 30%,能量回收系統(tǒng)每小時(shí)可產(chǎn)生 1.5kW?h 的電能,用于輔助船舶的照明、通信等設(shè)備,降低了船舶的燃油消耗和運(yùn)營(yíng)成本,具有明顯的節(jié)能減排效果。天津徑向浮動(dòng)軸承浮動(dòng)軸承能在粉塵環(huán)境下工作,是否因其密封設(shè)計(jì)特殊?
浮動(dòng)軸承的微流控芯片集成潤(rùn)滑系統(tǒng):將微流控技術(shù)應(yīng)用于浮動(dòng)軸承的潤(rùn)滑,開(kāi)發(fā)集成潤(rùn)滑系統(tǒng)。在軸承內(nèi)部設(shè)計(jì)微流控芯片,芯片上包含微米級(jí)的潤(rùn)滑油通道(寬度 100μm,深度 50μm)、微型泵和流量傳感器。微型泵采用壓電驅(qū)動(dòng),可精確控制潤(rùn)滑油的流量(精度 ±0.1μL/min),流量傳感器實(shí)時(shí)監(jiān)測(cè)潤(rùn)滑油的供給狀態(tài)。在精密機(jī)床主軸浮動(dòng)軸承應(yīng)用中,該微流控集成潤(rùn)滑系統(tǒng)使?jié)櫥途鶆蚍植嫉捷S承的各個(gè)摩擦部位,減少了 30% 的潤(rùn)滑油消耗,同時(shí)軸承的摩擦系數(shù)穩(wěn)定在 0.07 - 0.09 之間,提高了機(jī)床的加工精度和表面質(zhì)量,降低了維護(hù)成本。
浮動(dòng)軸承的微納復(fù)合織構(gòu)表面制備與性能研究:結(jié)合微織構(gòu)和納織構(gòu)的優(yōu)勢(shì),在浮動(dòng)軸承表面制備微納復(fù)合織構(gòu)以改善其摩擦學(xué)性能。先通過(guò)激光加工技術(shù)在軸承表面加工出微米級(jí)的凹坑陣列(直徑 200μm,深度 20μm),用于儲(chǔ)存潤(rùn)滑油和容納磨損顆粒;再利用原子層沉積技術(shù)在凹坑內(nèi)壁生長(zhǎng)納米級(jí)的二氧化鈦柱狀結(jié)構(gòu)(高度 500nm,直徑 50nm),進(jìn)一步增強(qiáng)表面的疏油性和減摩性能。實(shí)驗(yàn)結(jié)果顯示,具有微納復(fù)合織構(gòu)表面的浮動(dòng)軸承,在低速重載工況下,啟動(dòng)摩擦力矩降低 32%,運(yùn)行過(guò)程中的摩擦系數(shù)穩(wěn)定在 0.08 - 0.12 之間,相比光滑表面軸承,磨損速率下降 62%。在注塑機(jī)螺桿驅(qū)動(dòng)的浮動(dòng)軸承應(yīng)用中,該技術(shù)有效延長(zhǎng)了軸承使用壽命,減少了設(shè)備停機(jī)維護(hù)次數(shù)。浮動(dòng)軸承的散熱設(shè)計(jì),保障軸承在高溫下的性能。
浮動(dòng)軸承的仿生纖毛流體調(diào)控技術(shù):仿生纖毛流體調(diào)控技術(shù)模仿生物纖毛的定向擺動(dòng)特性,優(yōu)化浮動(dòng)軸承的潤(rùn)滑油流動(dòng)。在軸承油槽表面制備微米級(jí)纖毛陣列(高度 50μm,直徑 5μm),纖毛由形狀記憶合金材料制成。通過(guò)控制電流使纖毛產(chǎn)生周期性擺動(dòng),引導(dǎo)潤(rùn)滑油定向流動(dòng),增強(qiáng)油膜的穩(wěn)定性和承載能力。在高速旋轉(zhuǎn)機(jī)械應(yīng)用中,該技術(shù)使?jié)櫥驮谳S承表面的分布均勻性提高 60%,在 100000r/min 轉(zhuǎn)速下,油膜破裂風(fēng)險(xiǎn)降低 80%。同時(shí),纖毛的擺動(dòng)還可促進(jìn)潤(rùn)滑油的循環(huán)散熱,降低軸承工作溫度,為高速、高負(fù)荷工況下的浮動(dòng)軸承潤(rùn)滑提供了創(chuàng)新解決方案。浮動(dòng)軸承的自適應(yīng)溫控系統(tǒng),根據(jù)運(yùn)轉(zhuǎn)溫度調(diào)節(jié)潤(rùn)滑狀態(tài)。福建浮動(dòng)軸承安裝方式
浮動(dòng)軸承的自對(duì)中特性,降低設(shè)備安裝時(shí)的精度要求!天津渦輪浮動(dòng)軸承
浮動(dòng)軸承的仿生黏液 - 納米顆粒協(xié)同潤(rùn)滑體系:模仿生物黏液的潤(rùn)滑特性,結(jié)合納米顆粒的優(yōu)異性能,構(gòu)建協(xié)同潤(rùn)滑體系。以透明質(zhì)酸為基礎(chǔ)制備仿生黏液,其黏彈性可隨剪切速率變化自適應(yīng)調(diào)整,同時(shí)添加納米銅顆粒(粒徑 30nm)。在軸承運(yùn)行過(guò)程中,仿生黏液在低負(fù)載時(shí)表現(xiàn)為低黏度流體,減少能耗;高負(fù)載下迅速增稠形成強(qiáng)度高潤(rùn)滑膜,納米銅顆粒則填補(bǔ)表面微觀(guān)缺陷,增強(qiáng)承載能力。在注塑機(jī)合模機(jī)構(gòu)浮動(dòng)軸承應(yīng)用中,該協(xié)同潤(rùn)滑體系使軸承的摩擦系數(shù)降低 38%,磨損量減少 65%,且在頻繁啟停工況下,潤(rùn)滑膜仍能保持穩(wěn)定,有效延長(zhǎng)了設(shè)備的維護(hù)周期。天津渦輪浮動(dòng)軸承