生產企業(yè)為了極大限度地提高生產水平和經濟效益,不斷地向規(guī)?;透呒夹g技術含量發(fā)展,因此生產裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產生的物理化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態(tài)監(jiān)測維修既能經常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。工業(yè)廢氣排放的監(jiān)測檢測對于環(huán)境保護至關重要,只有達到國家標準才能減少對環(huán)境的污染。溫州汽車監(jiān)測控制策略
電機監(jiān)控系統(tǒng)適用于石油、化工、電力、煤炭、冶金、造紙、水泥等行業(yè),可以實時對低壓電動機的運行狀態(tài)進行監(jiān)測,對電機各類故障進行監(jiān)測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機節(jié)能提供依據,并可實現電機節(jié)能管理。系統(tǒng)特點1實時監(jiān)測電機回路石化、電力、水泥等電機用量大戶,需要對電機進行實時監(jiān)測,監(jiān)測內容包括電機的電流、電壓、電能、頻率、電機狀態(tài)(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數進行監(jiān)測,例如溫度、壓力等。本系統(tǒng)不僅可以監(jiān)測電機電壓、電流還能做能耗統(tǒng)計,工藝參數監(jiān)測,可以大幅提高企業(yè)自動化程度。2集中監(jiān)控,利于節(jié)能馬達監(jiān)控系統(tǒng)對用電大戶電機進行實時能耗監(jiān)測,監(jiān)測到的數據可以作為節(jié)能依據,并可通過系統(tǒng)進行節(jié)能控制,利于電機節(jié)能應用。3提高自動化水平.電機監(jiān)控系統(tǒng)是應用電力自動化技術、計算機技術和信息傳輸技術,集保護、監(jiān)測、控制、通信等功能于一體的綜合系統(tǒng),寧波仿真監(jiān)測設備工業(yè)監(jiān)測系統(tǒng)可以實時監(jiān)測生產線的運行狀態(tài)。
基于數據的故障檢測與診斷方法能夠對海量工業(yè)數據進行統(tǒng)計分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運行狀態(tài)和故障狀態(tài),可視為模式識別任務。故障檢測是判斷系統(tǒng)是否處于預期的正常運行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當于一個二分類任務。故障診斷是在確定發(fā)生故障的時候判斷系統(tǒng)處于哪一種故障狀態(tài),相當于一個多分類任務。因此,故障檢測和診斷技術的研究類似于模式識別,分為4個的步驟:數據獲取、特征提取、特征選擇和特征分類。1)數據獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數據這一背景下,傳統(tǒng)的基于數據的故障檢測與診斷方法被廣泛應用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術,并且對于不同的任務,沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機器學習的方法結構較淺,在提取信號的高維非線性關系方面能力有限。
預測性維護應運而生。其是以狀態(tài)為依據的新型維修方式,主要是對設備在運行中產生的二次效應(如振動、噪聲、沖擊脈沖、油樣成分、溫度等)進行連續(xù)在線的狀態(tài)監(jiān)測及數據分析,診斷并預測設備故障的發(fā)展趨勢,提前制定預測性維護計劃并實施檢維修的行為。總體來看,狀態(tài)監(jiān)測和故障診斷是判斷預測性維護是否合理的根本所在,數據狀態(tài)的連續(xù)監(jiān)測和遠程傳輸上傳相對已經比較成熟,而狀態(tài)預測和故障診斷主要還是依靠人工分析實現,診斷分析人員通過趨勢?波形?頻譜等專業(yè)分析工具,結合傳動結構?機械部件參數等信息,實現設備故障的精細定位。其發(fā)展趨勢是將物聯網及人工智能技術引入狀態(tài)預測及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準確性。監(jiān)測結果的分析可以幫助我們了解市場的潛在機會和風險。
電機狀態(tài)監(jiān)測和故障診斷技術是一種了解掌握電機在使用過程中狀態(tài),確定其整體或局部正常或異常,早期發(fā)現故障及其原因,并能預報故障發(fā)展趨勢的技術,電機狀態(tài)監(jiān)測與故障診斷技術包括識別電機狀態(tài)監(jiān)測和預測發(fā)展趨勢兩方面。設備狀態(tài)是指設備運行的工況,由設備運行過程中的各種性能參數以及設備運行過程中產生的二次效應參數和產品質量指標參數來描述。設備狀態(tài)的類型包括:正常、異常和故障三種。設備狀態(tài)監(jiān)測是通過測定以上參數,并進行分析處理,根據分析處理結果判定設備狀態(tài)。對設備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結合設備的歷史狀況和運行條件,弄清設備的客觀狀態(tài),獲取設備性能發(fā)展的趨勢規(guī)律,為設備的性能評價、合理使用、安全運行、故障診斷及設備自動控制打下基礎。監(jiān)測結果的評估可以幫助我們調整營銷策略和推廣方案。南通性能監(jiān)測介紹
監(jiān)測工作需要關注消費者的需求和反饋,以提高產品和服務的滿意度。溫州汽車監(jiān)測控制策略
刀具監(jiān)測管理系統(tǒng)是我們基于精密加工行業(yè)特征,結合加工中心、車床等機械加工過程,打造的一款刀具狀態(tài)監(jiān)測和壽命預測分析系統(tǒng),通過采集主軸電流(負載)信號、位置信號、速度信號等30維度+數據信號,結合大數據流式處理、自然語言處理等自學習處理算法和行業(yè)多年經驗數據沉淀,構建的一套完整的刀具壽命預測和狀態(tài)監(jiān)控管理系統(tǒng),能夠實現100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識別率達到99%以上,提供基于刀具狀態(tài)監(jiān)測和壽命預測的異常停機控制模塊,避免因刀具異常導致的產品質量損失和異常撞機事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來的產品質量損失,為用戶提供無憂機加工過程管理!溫州汽車監(jiān)測控制策略