7):62-66.[4]唐國斌,王偉,杜伸云,等.BIM在合肥南環(huán)線鋼桁橋柔性拱橋施的應(yīng)用[J].土木建筑工程信息技術(shù),2011(4):80-85.[5]錢楓.橋梁工程BIM技術(shù)應(yīng)用研究[J].鐵道標(biāo)準(zhǔn)設(shè)計,2015(12):51-52.[6]楊光,周魏,沈佳明.BIM技術(shù)在金匯港大橋工程中的應(yīng)用[J].城市住宅,2014(11):106-108.[7][M].上海:同濟大學(xué)出版社,2013:1-2.[8]鄒陽.橋梁信息模型(BrIM)在設(shè)計與施工階段的實施框架研究[D].重慶:重慶交通大學(xué),2014:2-5.[9]范立礎(chǔ).橋梁工程(上冊)[M].2版.北京:人民交通出版社,2014:122-124.[10]李亞男.BIM技術(shù)在橋梁工程運營階段的應(yīng)用研究[D].重慶:重慶交通大學(xué),2015:8-18.[11]李英男.以建模為設(shè)計工作的主要任務(wù)—通過應(yīng)用Revit來研究BIM技術(shù)[D].邯鄲:河北工程大學(xué),2013:12-17.[12]彭偉.BIM技術(shù)在鋼結(jié)構(gòu)橋梁中的應(yīng)用研究[J].公路交通科技,2015(8):180-181.[13]劉延宏.BIM技術(shù)在鐵路橋梁建設(shè)中的應(yīng)用[J].鐵路技術(shù)創(chuàng)新,2015(3):106-108.[14]王剛,文曦.基于Lumion的七連嶼連接橋工程三維可視化[J].安徽建筑,2015(2):96-97.[15]沈維龍,付臻,孫昱晨,等.建筑項目中Revit與Lumion的結(jié)合運用[J].智能建筑與城市信息,2016。實現(xiàn)直螺紋鋼筋自動轉(zhuǎn)運;西藏大U型筋箱梁生產(chǎn)線按需定制
步驟2中重點突出預(yù)應(yīng)力筋張拉、錨固、封端。步驟1中所述的預(yù)制預(yù)應(yīng)力混凝土小箱梁外形設(shè)計包括造型、混凝土面的粗糙度、棱角、預(yù)埋件構(gòu)造。步驟1中所述的預(yù)制預(yù)應(yīng)力混凝土小箱梁模型包括鋼筋骨架、混凝土、模板、預(yù)應(yīng)力筋、預(yù)應(yīng)力筋孔道、預(yù)埋件,并明確表達構(gòu)件細節(jié)、混凝土尺寸、鋼筋位置、預(yù)應(yīng)力筋位置和規(guī)格、預(yù)留孔孔道位置和尺寸、預(yù)埋件位置和型號。步驟2所述工序包括模具設(shè)計、澆筑方式、脫模方式,以及模板安裝、鋼筋綁扎、預(yù)應(yīng)力筋孔道設(shè)置、混凝土澆筑、混凝土養(yǎng)護、模板拆除、千斤頂定位安裝、預(yù)應(yīng)力穿索、預(yù)應(yīng)力張拉、孔道灌漿、預(yù)應(yīng)力放松和切斷、錨固、封端。步驟4所述各加工圖和實體模型中,包含全部構(gòu)件的所有參數(shù)特征。與現(xiàn)有技術(shù)相比,本發(fā)明可以獲得以下技術(shù)效果:本發(fā)明基于bim技術(shù)創(chuàng)建裝配式橋梁的預(yù)制預(yù)應(yīng)力混凝土小箱梁模型,對預(yù)制技術(shù)進行仿真模擬,選擇方案,重點突出預(yù)應(yīng)力張拉、灌漿、錨固、封端等關(guān)鍵技術(shù),有效提升了預(yù)應(yīng)力混凝土小箱梁預(yù)制效率,取得較好的社會效益和經(jīng)濟效益。附圖說明為了更清楚地說明本發(fā)明實施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對實施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡單地介紹,顯而易見地。西藏大U型筋箱梁生產(chǎn)線按需定制箱梁鋼筋加工開啟流水線生產(chǎn)!
STW32箱梁鋼筋自動化生產(chǎn)線主要運用于公路路橋加工中的箱梁鋼筋自動生產(chǎn)線,其中大U型鋼筋、頂板筋一鍵成型,無需人工手動彎曲,解決了箱梁生產(chǎn)線加工大U型鋼筋、頂板筋中人工需求大,耗時長的歷史問題。產(chǎn)品配置:1.鋼筋自動打散上料生產(chǎn)線(GSL40)1臺2.鋼筋自動定尺下料鋸切生產(chǎn)線(SGQ32)1臺3.鋼筋自動成型彎曲生產(chǎn)線(ZWS32)1臺;產(chǎn)品優(yōu)點:1.鋼筋自動打撒,自動上料,自動計數(shù);2.解決人工輔助分料問題;3.自動喂料、自動升降鋼筋切割,速度快、效率高、質(zhì)量保證;4.伺服移動+導(dǎo)軌定尺方式,確保精細尺寸;5.三位機械手+柔性的氣動手指,靈活抓取工件,精細定位;6.四機頭臥式U型筋、頂板筋加工中心,自動上料、對齊、定尺、彎曲、自動下料儲存;7.解決不同規(guī)格異形鋼筋圖形,針對大圓弧、長鋼筋一次成型;8.節(jié)省高超度度的搬運工序,效率高,產(chǎn)量大,故障率低;節(jié)約材料、消耗低優(yōu)點;9.整套生產(chǎn)線,連貫柔性控制程序,一人一鍵操作,是鋼筋加工梁廠智慧化生產(chǎn)線優(yōu)先項,也是高科技、智能化體現(xiàn)。
并明確表達構(gòu)件細節(jié)、混凝土尺寸、鋼筋位置、預(yù)應(yīng)力筋位置和規(guī)格、預(yù)留孔孔道位置和尺寸、預(yù)埋件位置和型號。步驟2所述工序包括模具設(shè)計、澆筑方式、脫模方式,以及模板安裝、鋼筋綁扎、預(yù)應(yīng)力筋孔道設(shè)置、混凝土澆筑、混凝土養(yǎng)護、模板拆除、千斤頂定位安裝、預(yù)應(yīng)力穿索、預(yù)應(yīng)力張拉、孔道灌漿、預(yù)應(yīng)力放松和切斷、錨固、封端。步驟4所述各加工圖和實體模型中,包含全部構(gòu)件的所有參數(shù)特征。。對于本領(lǐng)域技術(shù)人員而言,顯然本發(fā)明不限于上述示范性實施例的細節(jié),而且在不背離本發(fā)明的精神或基本特征的情況下,能夠以其他的具體形式實現(xiàn)本發(fā)明。因此,無論從哪一點來看,均應(yīng)將實施例看作是示范性的,而且是非限制性的,本發(fā)明的范圍由所附權(quán)利要求而不是上述說明限定,因此旨在將落在權(quán)利要求的等同要件的含義和范圍內(nèi)的所有變化囊括在本發(fā)明內(nèi)。此外,應(yīng)當(dāng)理解,雖然本說明書按照實施方式加以描述,但并非每個實施方式包含一個技術(shù)方案,說明書的這種敘述方式是為清楚起見,本領(lǐng)域技術(shù)人員應(yīng)當(dāng)將說明書作為一個整體,各實施例中的技術(shù)方案也可以經(jīng)適當(dāng)組合,形成本領(lǐng)域技術(shù)人員可以理解的其他實施方式。減少箱梁鋼筋加工人工綁扎!
根據(jù)施工平臺實際載重確定配重槽內(nèi)加配重量,整個施工平臺的重心必須在導(dǎo)向軌道的右側(cè),操作平臺橫檔間距應(yīng)當(dāng)保證施工人員可以從中穿過到操作平臺,人力推動該施工平臺即可在鋼箱梁頂板上滑動進行作業(yè)。同時,施工平臺框架桁架管由方管或方鋼組成,框架節(jié)點為焊接連接。安裝該施工平臺時,將導(dǎo)向軌道通過間斷焊固定在鋼箱梁頂板上,導(dǎo)向軌道為90°等邊角鋼。樓梯橫檔間距應(yīng)當(dāng)保證施工人員可以從中穿過到操作平臺。人力推動該施工平臺即可在鋼箱梁頂板上滑動,無需借助動力機具。使用時根據(jù)施工平臺實際載重確定配重槽內(nèi)加配重量,整個施工平臺的重心必須在導(dǎo)向軌道的右側(cè)。施工時吊架配重槽端可用永磁手動吸盤吸在橋面上。操作平臺上可以鋪一層5mm厚的膠合板??蚣苓B接板與滾輪座連接板通過螺栓連接,方便保養(yǎng)和維修。兩滾輪座連接板上表面標(biāo)高相同,能夠防止施工平臺在縱向移動時發(fā)生傾覆,不允許發(fā)生橫向位移。滾輪與框架連接板采用彈簧墊圈和平墊圈連接,起到了抗震作用。雖然,上文中已經(jīng)用一般性說明及具體實施方案對本發(fā)明作了詳盡的描述,但在本發(fā)明基礎(chǔ)上,可以對之作一些修改或改進,這對本領(lǐng)域技術(shù)人員而言是顯而易見的。因此。1人操作整條生產(chǎn)線,無需多人;上海固特數(shù)控箱梁生產(chǎn)線公司
STW32箱梁鋼筋自動化生產(chǎn)線,長箍筋邊尺寸15m!西藏大U型筋箱梁生產(chǎn)線按需定制
鋼桁架加勁PC連續(xù)箱梁橋的BIM建模技術(shù)鋼桁架加勁PC連續(xù)箱梁橋的BIM建模技術(shù)朱奕蓓1,程耀東1,謝李釗2(1.蘭州交通大學(xué)甘肅省道路橋梁與地下工程重點實驗室,蘭州730070;2.蘭州交通大學(xué)道橋工程災(zāi)害防治技術(shù)國家地方聯(lián)合工程實驗室,蘭州730070)摘要:簡述BIM技術(shù)的含義和特點,利用AutodeskRevit軟件平臺,通過建立參數(shù)化橋墩、箱梁、鋼筋等族庫,實現(xiàn)族模型的自動修改,構(gòu)建鋼桁架加勁PC連續(xù)箱梁橋的模型。探討B(tài)IM模型的圖形格式轉(zhuǎn)換方法,并利用Lumion軟件平臺實現(xiàn)模型的動態(tài)漫游展示,為該類橋梁結(jié)構(gòu)的細部展示提供三維可視化手段和新理念。關(guān)鍵詞:建筑信息模型;箱形連續(xù)梁橋;參數(shù)化;模擬;漫游動畫建筑信息模型(BuildingInformationModeling,簡稱BIM)以三維數(shù)字為基礎(chǔ),集成了建筑工程項目各項相關(guān)工程數(shù)據(jù)模型,是對工程項目設(shè)施實體與功能特性的數(shù)字化表達,更是一種虛擬設(shè)計與建造(即可視化設(shè)計和施工)項目信息載體[1]。從1975年喬治亞理工大學(xué)的CharlesEastman教授提出BIM理念到逐步完善,再到工程建設(shè)行業(yè)的普遍接受,經(jīng)歷了幾十年的歷程[2];BIM的實踐主要由芬蘭、挪威和新加坡等國家所主導(dǎo),隨著全球信息化水平的不斷提高,經(jīng)過長期的實踐和探索。西藏大U型筋箱梁生產(chǎn)線按需定制