隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:研發(fā)千億參數(shù)模型的輕量化版本,支持在邊緣設備上運行多模態(tài)推理任務。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,結(jié)合TSN時間敏感網(wǎng)絡,為L5級自動駕駛提供10Gbps級實時數(shù)據(jù)傳輸能力。“邊緣計算不是云端的替代者,而是AI能力的延伸?!北堵?lián)德CTO李明表示,“通過精確的分工策略,我們正在讓每一輛自動駕駛汽車、每一臺工業(yè)機器人都擁有一個‘本地化超級大腦’?!痹谶@場智能變革中,邊緣計算與AI的深度融合,正重新定義技術與產(chǎn)業(yè)的邊界。邊緣計算的發(fā)展需要跨行業(yè)的合作與協(xié)同。國產(chǎn)邊緣計算網(wǎng)關
面對企業(yè)跨園區(qū)、跨地域的算力調(diào)度需求,倍聯(lián)德創(chuàng)新提出“中心云-邊緣云-終端設備”三級協(xié)同架構。其自主研發(fā)的MEC編排器可動態(tài)分配算力資源:在深圳某三甲醫(yī)院的遠程手術場景中,系統(tǒng)自動將4K影像渲染任務分配至院內(nèi)邊緣節(jié)點,而AI病理分析模型則運行于云端,使單臺手術數(shù)據(jù)傳輸量減少92%,同時保障99.99%的可靠性。這一架構的突破性在于“算力隨需而動”。在東莞某電子廠的柔性生產(chǎn)線改造項目中,倍聯(lián)德方案支持200個邊緣節(jié)點根據(jù)訂單類型自動切換算法模型,使產(chǎn)線換型時間從4小時縮短至15分鐘,設備綜合效率(OEE)提升18%。超市邊緣計算云平臺在智能制造中,邊緣計算可實時監(jiān)測設備狀態(tài)并觸發(fā)預警,避免生產(chǎn)線停機風險。
倍聯(lián)德積極參與邊緣計算安全標準化工作,作為重要成員參與編制《工業(yè)邊緣計算安全技術要求》等3項國家標準。公司聯(lián)合中國信通院、華為等機構發(fā)起“邊緣計算安全聯(lián)盟”,推動設備認證、漏洞共享、應急響應等機制落地。截至2025年6月,聯(lián)盟已吸納120余家企業(yè),完成2000余款邊緣設備的安全評估。在智能電網(wǎng)領域,倍聯(lián)德與國家電網(wǎng)合作構建“云-邊-端”協(xié)同防護體系,通過邊緣節(jié)點部署輕量化入侵檢測系統(tǒng),將安全事件響應時間從分鐘級縮短至秒級。在智能制造場景中,公司為富士康打造的“安全即服務”平臺,集成威脅情報、漏洞管理、合規(guī)檢查等功能,使客戶安全運維成本降低40%。
邊緣計算通過在車輛本地或路側(cè)單元部署計算節(jié)點,將數(shù)據(jù)處理下沉至數(shù)據(jù)源附近。這一架構變革帶來三大重要優(yōu)勢:毫秒級響應:倍聯(lián)德為某車企定制的邊緣計算平臺,將傳感器數(shù)據(jù)預處理、目標檢測、路徑規(guī)劃等任務在本地完成,決策延遲壓縮至15毫秒以內(nèi)。在高速公路緊急避障測試中,系統(tǒng)提前1.2秒觸發(fā)制動,較云端方案碰撞風險降低82%。帶寬優(yōu)化:邊緣節(jié)點通過特征提取技術,將原始數(shù)據(jù)量壓縮90%以上。例如,某物流園區(qū)自動駕駛卡車項目采用倍聯(lián)德邊緣設備后,每日數(shù)據(jù)傳輸量從12TB降至1.2TB,網(wǎng)絡帶寬成本節(jié)省75%。高可靠性:在深圳某港口無人集卡項目中,倍聯(lián)德邊緣計算節(jié)點支持斷網(wǎng)自主運行,即使云端連接中斷,車輛仍能基于本地地圖和實時感知數(shù)據(jù)完成裝卸作業(yè),系統(tǒng)可用性達99.99%。邊緣計算有助于減少數(shù)據(jù)中心的流量負載。
在5G網(wǎng)絡與人工智能技術的雙重驅(qū)動下,邊緣計算正從概念驗證走向規(guī)?;逃茫蔀橥苿庸I(yè)互聯(lián)網(wǎng)、智慧城市、智能醫(yī)療等領域變革的重要引擎。據(jù)IDC預測,到2026年,全球邊緣計算市場規(guī)模將突破1200億美元,其中中國市場的年復合增長率將超過35%。作為國家高新企業(yè),深圳市倍聯(lián)德實業(yè)有限公司憑借其在邊緣計算設備研發(fā)、場景化解決方案及生態(tài)協(xié)同領域的創(chuàng)新突破,正重新定義邊緣計算的技術邊界與商業(yè)價值。傳統(tǒng)云計算架構下,數(shù)據(jù)需上傳至云端處理,導致工業(yè)控制、自動駕駛等場景面臨200毫秒以上的延遲,難以滿足實時性要求。倍聯(lián)德通過“異構計算+本地化AI”技術,將關鍵任務處理能力下沉至邊緣節(jié)點,實現(xiàn)毫秒級響應。邊緣計算正在逐步改變數(shù)據(jù)處理的方式。廣東移動邊緣計算經(jīng)銷商
邊緣計算正在改變我們對分布式系統(tǒng)的看法。國產(chǎn)邊緣計算網(wǎng)關
倍聯(lián)德自主研發(fā)的EdgeAI平臺,將聯(lián)邦學習技術與邊緣計算深度融合:動態(tài)負載均衡:根據(jù)5G網(wǎng)絡信號強度、設備負載等參數(shù),自動調(diào)整邊緣節(jié)點與云端的任務分配,確保服務連續(xù)性;輕量化模型部署:通過模型壓縮技術,將工業(yè)質(zhì)檢、安全監(jiān)控等AI模型的體積縮小90%,可在邊緣節(jié)點直接運行,減少數(shù)據(jù)回傳;安全增強:集成國密SM2/SM4加密算法,支持區(qū)塊鏈存證,確保邊緣數(shù)據(jù)傳輸與存儲的安全性。在某化工企業(yè)的安全監(jiān)控項目中,EdgeAI平臺通過分析邊緣節(jié)點采集的毒氣傳感器數(shù)據(jù),提前15天預警潛在泄漏風險,避免重大事故發(fā)生。國產(chǎn)邊緣計算網(wǎng)關