有人批評(píng)這些技術(shù)太專注于特定的問題,而沒有考慮長(zhǎng)遠(yuǎn)的強(qiáng)人工智能目標(biāo)。集成方法智能AGENT范式智能AGENT是一個(gè)會(huì)感知環(huán)境并作出行動(dòng)以達(dá)致目標(biāo)的系統(tǒng)。**簡(jiǎn)單的智能AGENT是那些可以解決特定問題的程序。更復(fù)雜的AGENT包括人類和人類組織(如公司)。這些范式可以讓研究者研究單獨(dú)的問題和找出有用且可驗(yàn)證的方案,而不需考慮單一的方法。一個(gè)解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號(hào)方法和邏輯方法,一些則是子符號(hào)神經(jīng)網(wǎng)絡(luò)或其他新的方法。范式同時(shí)也給研究者提供一個(gè)與其他領(lǐng)域溝通的共同語言--如決策論和經(jīng)濟(jì)學(xué)(也使用ABSTRACTAGENTS的概念)。90年代智能AGENT范式被***接受。AGENT體系結(jié)構(gòu)和認(rèn)知體系結(jié)構(gòu)研究者設(shè)計(jì)出一些系統(tǒng)來處理多ANGENT系統(tǒng)中智能AGENT之間的相互作用。一個(gè)系統(tǒng)中包含符號(hào)和子符號(hào)部分的系統(tǒng)稱為混合智能系統(tǒng),而對(duì)這種系統(tǒng)的研究則是人工智能系統(tǒng)集成。分級(jí)控制系統(tǒng)則給反應(yīng)級(jí)別的子符號(hào)AI和**高級(jí)別的傳統(tǒng)符號(hào)AI提供橋梁,同時(shí)放寬了規(guī)劃和世界建模的時(shí)間。RODNEYBROOKS的SUBSUMPTIONARCHITECTURE就是一個(gè)早期的分級(jí)系統(tǒng)計(jì)劃。人工智能智能模擬機(jī)器視、聽、觸、感覺及思維方式的模擬:指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別。語言識(shí)別、圖像識(shí)別、自然語言處理和**系統(tǒng)等?;萆絽^(qū)多功能人工智能系統(tǒng)供應(yīng)
并告訴我們?nèi)绾尾拍苤圃斐稣嬲饬x上的智能機(jī)器——這樣的智能機(jī)器將不再**是對(duì)人類大腦的簡(jiǎn)單模仿,它們的智能在許多方面會(huì)遠(yuǎn)遠(yuǎn)超過人腦?;艚鹚拐J(rèn)為,從人工智能到神經(jīng)網(wǎng)絡(luò),早先復(fù)制人類智能的努力無一成功,究其原因,都是由于人們并未真正了解智能的內(nèi)涵和人類大腦。所謂智能,就是人腦比較過去、預(yù)測(cè)未來的能力。大腦不是計(jì)算機(jī),不會(huì)亦步亦趨、按部就班的根據(jù)輸入產(chǎn)生輸出。大腦是一個(gè)龐大的記憶系統(tǒng),它儲(chǔ)存著在某種程度上反映世界真實(shí)結(jié)構(gòu)的經(jīng)驗(yàn),能夠記憶事件的前后順序及其相互關(guān)系,并依據(jù)記憶做出預(yù)測(cè)。形成智能、感覺、創(chuàng)造力以及知覺等基礎(chǔ)的,就是大腦的記憶-預(yù)測(cè)系統(tǒng)……《人工智能哲學(xué)》:人工智能哲學(xué)是伴隨現(xiàn)代信息理論和計(jì)算機(jī)技術(shù)發(fā)展起來的一個(gè)哲學(xué)分支。本書收集了人工智能研究領(lǐng)域?qū)W者的十五篇**性論文,這些論文為計(jì)算機(jī)科學(xué)的發(fā)展和人工智能哲學(xué)的建立作出了開創(chuàng)性的貢獻(xiàn)。這些文章總結(jié)了人工智能發(fā)展的歷程,該學(xué)科發(fā)展的趨勢(shì),以及人工智能中的重要課題。在這些劃時(shí)代的著作中,包括有:現(xiàn)代計(jì)算機(jī)理論之父艾倫·圖靈的“計(jì)算機(jī)與智能”;美國(guó)哲學(xué)家塞爾的“心靈,大腦與程序”;J·E·欣頓等人的“分布式表述”?;萆絽^(qū)多功能人工智能系統(tǒng)供應(yīng)并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機(jī)器,該領(lǐng)域的研究包括機(jī)器人。
這種方法叫工程學(xué)方法(ENGINEERIN***PROACH),它已在一些領(lǐng)域內(nèi)作出了成果,如文字識(shí)別、電腦下棋等。另一種是模擬法(MODELIN***PROACH),它不*要看效果,還要求實(shí)現(xiàn)方法也和人類或生物機(jī)體所用的方法相同或相類似。遺傳算法(GENERICALGORITHM,簡(jiǎn)稱GA)和人工神經(jīng)網(wǎng)絡(luò)(ARTIFICIALNEURALNETWORK,簡(jiǎn)稱ANN)均屬后一類型。遺傳算法模擬人類或生物的遺傳-進(jìn)化機(jī)制,人工神經(jīng)網(wǎng)絡(luò)則是模擬人類或動(dòng)物大腦中神經(jīng)細(xì)胞的活動(dòng)方式。為了得到相同智能效果,兩種方式通常都可使用。采用前一種方法,需要人工詳細(xì)規(guī)定程序邏輯,如果游戲簡(jiǎn)單,還是方便的。如果游戲復(fù)雜,角色數(shù)量和活動(dòng)空間增加,相應(yīng)的邏輯就會(huì)很復(fù)雜(按指數(shù)式增長(zhǎng)),人工編程就非常繁瑣,容易出錯(cuò)。而一旦出錯(cuò),就必須修改原程序,重新編譯、調(diào)試,**后為用戶提供一個(gè)新的版本或提供一個(gè)新補(bǔ)丁,非常麻煩。采用后一種方法時(shí),編程者要為每一角色設(shè)計(jì)一個(gè)智能系統(tǒng)(一個(gè)模塊)來進(jìn)行控制,這個(gè)智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠?qū)W習(xí),能漸漸地適應(yīng)環(huán)境,應(yīng)付各種復(fù)雜情況。這種系統(tǒng)開始也常犯錯(cuò)誤,但它能吸取教訓(xùn),下一次運(yùn)行時(shí)就可能改正,至少不會(huì)永遠(yuǎn)錯(cuò)下去。
LOGICTHEORIST)的程序.這個(gè)程序被許多人認(rèn)為是***個(gè)AI程序.它將每個(gè)問題都表示成一個(gè)樹形模型,然后選擇**可能得到正確結(jié)論的那一枝來求解問題."邏輯**"對(duì)公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個(gè)重要的里程碑.1956年,被認(rèn)為是人工智能之父的JOHNMCCARTHY組織了一次學(xué)會(huì),將許多對(duì)機(jī)器智能感興趣的**學(xué)者聚集在一起進(jìn)行了一個(gè)月的討論.他請(qǐng)他們到VERMONT參加"DARTMOUTH人工智能夏季研究會(huì)".從那時(shí)起,這個(gè)領(lǐng)域被命名為"人工智能".雖然DARTMOUTH學(xué)會(huì)不是非常成功,但它確實(shí)集中了AI的創(chuàng)立者們,并為以后的AI研究奠定了基礎(chǔ).DARTMOUTH會(huì)議后的7年中,AI研究開始快速發(fā)展.雖然這個(gè)領(lǐng)域還沒明確定義,會(huì)議中的一些思想已被重新考慮和使用了.CARNEGIEMELLON大學(xué)和MIT開始組建AI研究中心.研究面臨新的挑戰(zhàn):下一步需要建立能夠更有效解決問題的系統(tǒng),例如在"邏輯**"中減少搜索;還有就是建立可以自我學(xué)習(xí)的系統(tǒng).1957年一個(gè)新程序,"通用解題機(jī)"(GPS)的***個(gè)版本進(jìn)行了測(cè)試.這個(gè)程序是由制作"邏輯**"的同一個(gè)組開發(fā)的.GPS擴(kuò)展了WIENER的反饋原理,可以解決很多常識(shí)問題.兩年以后。人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì)。
如詞和想法?還是需要“子符號(hào)”的處理?JOHNHAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應(yīng)歸類為SYNTHETICINTELLIGENCE,[29]這個(gè)概念后來被某些非GOFAI研究者采納。大腦模擬主條目:控制論和計(jì)算神經(jīng)科學(xué)20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如。這些研究者還經(jīng)常在普林斯頓大學(xué)和英國(guó)的RATIOCLUB舉行技術(shù)協(xié)會(huì)會(huì)議.直到1960,大部分人已經(jīng)放棄這個(gè)方法,盡管在80年代再次提出這些原理。符號(hào)處理主條目:GOFAI當(dāng)20世紀(jì)50年代,數(shù)字計(jì)算機(jī)研制成功,研究者開始探索人類智能是否能簡(jiǎn)化成符號(hào)處理。研究主要集中在卡內(nèi)基梅隆大學(xué),斯坦福大學(xué)和麻省理工學(xué)院,而各自有**的研究風(fēng)格。JOHNHAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。[33]60年代,符號(hào)方法在小型證明程序上模擬高級(jí)思考有很大的成就。基于控制論或神經(jīng)網(wǎng)絡(luò)的方法則置于次要。[34]60~70年代的研究者確信符號(hào)方法**終可以成功創(chuàng)造強(qiáng)人工智能的機(jī)器,同時(shí)這也是他們的目標(biāo)。認(rèn)知模擬經(jīng)濟(jì)學(xué)家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化??梢栽O(shè)想,未來人工智能帶來的科技產(chǎn)品,將會(huì)是人類智慧的“容器”?;萆絽^(qū)多功能人工智能系統(tǒng)供應(yīng)
人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大?;萆絽^(qū)多功能人工智能系統(tǒng)供應(yīng)
例如只有有限數(shù)量的幾何形體)中的研究與編程.在MIT由MARVINMINSKY領(lǐng)導(dǎo)的研究人員發(fā)現(xiàn),面對(duì)小規(guī)模的對(duì)象,計(jì)算機(jī)程序可以解決空間和邏輯問題.其它如在60年代末出現(xiàn)的"STUDENT"可以解決代數(shù)問題,"SIR"可以理解簡(jiǎn)單的英語句子.這些程序的結(jié)果對(duì)處理語言理解和邏輯有所幫助.70年代另一個(gè)進(jìn)展是**系統(tǒng).**系統(tǒng)可以預(yù)測(cè)在一定條件下某種解的概率.由于當(dāng)時(shí)計(jì)算機(jī)已有巨大容量,**系統(tǒng)有可能從數(shù)據(jù)中得出規(guī)律.**系統(tǒng)的市場(chǎng)應(yīng)用很廣.十年間,**系統(tǒng)被用于股市預(yù)測(cè),幫助醫(yī)生診斷疾病,以及指示礦工確定礦藏位置等.這一切都因?yàn)?*系統(tǒng)存儲(chǔ)規(guī)律和信息的能力而成為可能.70年代許多新方法被用于AI開發(fā),如MINSKY的構(gòu)造理論.另外DAVIDMARR提出了機(jī)器視覺方面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信息,可以推斷出圖像可能是什么.同時(shí)期另一項(xiàng)成果是PROLOGE語言,于1972年提出.80年代期間,AI前進(jìn)更為迅速,并更多地進(jìn)入商業(yè)領(lǐng)域.1986年?;萆絽^(qū)多功能人工智能系統(tǒng)供應(yīng)
無錫潤(rùn)創(chuàng)網(wǎng)絡(luò)科技有限公司屬于數(shù)碼、電腦的高新企業(yè),技術(shù)力量雄厚。無錫潤(rùn)創(chuàng)是一家有限責(zé)任公司企業(yè),一直“以人為本,服務(wù)于社會(huì)”的經(jīng)營(yíng)理念;“誠(chéng)守信譽(yù),持續(xù)發(fā)展”的質(zhì)量方針。公司擁有專業(yè)的技術(shù)團(tuán)隊(duì),具有軟件開發(fā),軟件技術(shù)服務(wù),互聯(lián)網(wǎng)信息服務(wù)等多項(xiàng)業(yè)務(wù)。無錫潤(rùn)創(chuàng)順應(yīng)時(shí)代發(fā)展和市場(chǎng)需求,通過**技術(shù),力圖保證高規(guī)格高質(zhì)量的軟件開發(fā),軟件技術(shù)服務(wù),互聯(lián)網(wǎng)信息服務(wù)。