這樣做的好處是,融合模型的錯(cuò)誤來自不同的分類器,而來自不同分類器的錯(cuò)誤往往互不相關(guān)、互不影響,不會(huì)造成錯(cuò)誤的進(jìn)一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規(guī)則融合(bayes’rulebased)以及集成學(xué)習(xí)(ensemblelearning)等。其中集成學(xué)習(xí)作為后端融合方式的典型**,被廣泛應(yīng)用于通信、計(jì)算機(jī)識(shí)別、語音識(shí)別等研究領(lǐng)域。中間融合是指將不同的模態(tài)數(shù)據(jù)先轉(zhuǎn)化為高等特征表達(dá),再于模型的中間層進(jìn)行融合,如圖3所示。以深度神經(jīng)網(wǎng)絡(luò)為例,神經(jīng)網(wǎng)絡(luò)通過一層一層的管道映射輸入,將原始輸入轉(zhuǎn)換為更高等的表示。中...
比黑盒適用性廣的優(yōu)勢就凸顯出來了。[5]軟件測試方法手動(dòng)測試和自動(dòng)化測試自動(dòng)化測試,顧名思義就是軟件測試的自動(dòng)化,即在預(yù)先設(shè)定的條件下運(yùn)行被測程序,并分析運(yùn)行結(jié)果??偟膩碚f,這種測試方法就是將以人驅(qū)動(dòng)的測試行為轉(zhuǎn)化為機(jī)器執(zhí)行的一種過程。對(duì)于手動(dòng)測試,其在設(shè)計(jì)了測試用例之后,需要測試人員根據(jù)設(shè)計(jì)的測試用例一步一步來執(zhí)行測試得到實(shí)際結(jié)果,并將其與期望結(jié)果進(jìn)行比對(duì)。[5]軟件測試方法不同階段測試編輯軟件測試方法單元測試單元測試主要是對(duì)該軟件的模塊進(jìn)行測試,通過測試以發(fā)現(xiàn)該模塊的實(shí)際功能出現(xiàn)不符合的情況和編碼錯(cuò)誤。由于該模塊的規(guī)模不大,功能單一,結(jié)構(gòu)較簡單,且測試人員可通過閱讀源程序清楚知道其...
評(píng)審步驟以及評(píng)審記錄機(jī)制。3)評(píng)審項(xiàng)由上層****。通過培訓(xùn)參加評(píng)審的人員,使他們理解和遵循相牢的評(píng)審政策,評(píng)審步驟。(II)建立測試過程的測量程序測試過程的側(cè)量程序是評(píng)價(jià)測試過程質(zhì)量,改進(jìn)測試過程的基礎(chǔ),對(duì)監(jiān)視和控制測試過程至關(guān)重要。測量包括測試進(jìn)展,測試費(fèi)用,軟件錯(cuò)誤和缺陷數(shù)據(jù)以及產(chǎn)品淵量等。建立淵試測量程序有3個(gè)子目標(biāo):1)定義**范圍內(nèi)的測試過程測量政策和目標(biāo)。2)制訂測試過程測量計(jì)劃。測量計(jì)劃中應(yīng)給出收集,分析和應(yīng)用測量數(shù)據(jù)的方法。3)應(yīng)用測量結(jié)果制訂測試過程改進(jìn)計(jì)劃。(III)軟件質(zhì)量評(píng)價(jià)軟件質(zhì)量評(píng)價(jià)內(nèi)容包括定義可測量的軟件質(zhì)量屬性,定義評(píng)價(jià)軟件工作產(chǎn)品的質(zhì)量目標(biāo)等項(xiàng)工作。...
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的...
先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)...
此外格式結(jié)構(gòu)信息具有明顯的語義信息,但基于格式結(jié)構(gòu)信息的檢測方法沒有提取決定軟件行為的代碼節(jié)和數(shù)據(jù)節(jié)信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執(zhí)行文件的一些性質(zhì),字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息都部分捕捉到了惡意軟件和良性軟件間的可區(qū)分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執(zhí)行文件的本質(zhì),使得檢測結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術(shù)實(shí)現(xiàn)要素:本發(fā)明實(shí)施例的目的在于提供一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,以解決現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類...
12)把節(jié)裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標(biāo)志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統(tǒng)計(jì)差異:(1)證書表是軟件廠商的可認(rèn)證的聲明,惡意軟件很少有證書表,而良性軟件大部分都有軟件廠商可認(rèn)證的聲明;(2)惡意軟件的調(diào)試數(shù)據(jù)也明顯小于正常文件的,這是因?yàn)閻阂廛浖榱嗽黾诱{(diào)試的難度,很少有調(diào)試數(shù)據(jù);(3)惡意軟件4個(gè)節(jié)(.text、.rsrc、.reloc和.rdata)的characteristics屬性和良性軟件的也有明顯差異,characteristics屬性通常**該節(jié)是否可讀、可寫、可執(zhí)行等,部分惡意軟件的代...
為了有效保證這一階段測試的客觀性,必須由**的測試小組來進(jìn)行相關(guān)的系統(tǒng)測試。另外,系統(tǒng)測試過程較為復(fù)雜,由于在系統(tǒng)測試階段不斷變更需求造成功能的刪除或增加,從而使程序不斷出現(xiàn)相應(yīng)的更改,而程序在更改后可能會(huì)出現(xiàn)新的問題,或者原本沒有問題的功能由于更改導(dǎo)致出現(xiàn)問題。所以,測試人員必須進(jìn)行回歸測試。[2]軟件測試方法驗(yàn)收測試驗(yàn)收測試是**后一個(gè)階段的測試操作,在軟件產(chǎn)品投入正式運(yùn)行前的所要進(jìn)行的測試工作。和系統(tǒng)測試相比而言,驗(yàn)收測試與之的區(qū)別就只是測試人員不同,驗(yàn)收測試則是由用戶來執(zhí)行這一操作的。驗(yàn)收測試的主要目標(biāo)是為向用戶展示所開發(fā)出來的軟件符合預(yù)定的要求和有關(guān)標(biāo)準(zhǔn),并驗(yàn)證軟件實(shí)際工作的...
3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,(12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志。存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無證書表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。生成軟件樣本的字節(jié)碼n-grams特征視圖,是...
這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件?;跀?shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可...
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本,并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測試樣本進(jìn)行檢測并得出檢測結(jié)果。進(jìn)一步的,所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api;所述提取軟件樣本的二進(jìn)制可執(zhí)行文...
當(dāng)我們拿到一份第三方軟件測試報(bào)告的時(shí)候,我們可能會(huì)好奇第三方軟件檢測機(jī)構(gòu)是如何定義一份第三方軟件測試報(bào)告的費(fèi)用呢,為何價(jià)格會(huì)存在一些差異,如何找到高性價(jià)比的第三方軟件測試機(jī)構(gòu)來出具第三方軟件檢測報(bào)告呢。我們可以從以下三個(gè)方面著手討論關(guān)于軟件檢測機(jī)構(gòu)的第三方軟件測試報(bào)告費(fèi)用的一些問題,對(duì)大家在選擇適合價(jià)格的軟件檢測機(jī)構(gòu),出具高性價(jià)比的軟件檢測報(bào)告有一定的幫助和參考意義。1、首先,軟件檢測機(jī)構(gòu)大小的關(guān)系,從資質(zhì)上來說,軟件檢測機(jī)構(gòu)的規(guī)模大小和資質(zhì)的有效性是沒有任何關(guān)系的??赡苄⌒偷能浖z測機(jī)構(gòu),員工人數(shù)規(guī)模會(huì)小一點(diǎn),但是出具的CMA或者CNAS第三方軟件檢測報(bào)告和大型機(jī)構(gòu)的效力是沒有區(qū)別的...
[1]中文名軟件測試方法外文名SoftwareTestingMethod目的測試軟件性能所屬行業(yè)計(jì)算機(jī)作用選擇合適的軟件目錄1概述2原則3分類?靜態(tài)測試和動(dòng)態(tài)測試?黑盒測試、白盒測試和灰盒測試?手動(dòng)測試和自動(dòng)化測試4不同階段測試?單元測試?集成測試?系統(tǒng)測試?驗(yàn)收測試5重要性軟件測試方法概述編輯軟件測試方法的目的包括:發(fā)現(xiàn)軟件程序中的錯(cuò)誤、對(duì)軟件是否符合設(shè)計(jì)要求,以及是否符合合同中所要達(dá)到的技術(shù)要求,進(jìn)行有關(guān)驗(yàn)證以及評(píng)估軟件的質(zhì)量。**終實(shí)現(xiàn)將高質(zhì)量的軟件系統(tǒng)交給用戶的目的。而軟件的基本測試方法主要有靜態(tài)測試和動(dòng)態(tài)測試、功能測試、性能測試、黑盒測試和白盒測試等等。[2]軟件測試方法眾多...
3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,(12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志。存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無證書表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。生成軟件樣本的字節(jié)碼n-grams特征視圖,是...
2)軟件產(chǎn)品登記測試流程材料準(zhǔn)備并遞交------實(shí)驗(yàn)室受理------環(huán)境準(zhǔn)備------測試實(shí)施------輸出報(bào)告------通知客戶------繳費(fèi)并取報(bào)告服務(wù)區(qū)域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報(bào)告|軟件檢測報(bào)告以“軟件質(zhì)量為目標(biāo),貫穿整個(gè)軟件生命周期、覆蓋軟件測試生命周期”的**測試服務(wù)模式,真正做到了“軟件測試應(yīng)該越早介入越好的原則”,從軟件生命周期的每一個(gè)環(huán)節(jié)把控軟件產(chǎn)品質(zhì)量;提供軟件產(chǎn)品質(zhì)量度量依據(jù),提供軟件可靠性分析依據(jù)。軟件成果鑒定測試結(jié)果可以作為軟件類科技成果鑒定的依據(jù)。提供功能、性能、標(biāo)準(zhǔn)符合性、易用性、安全性、可靠性等專項(xiàng)測試...
比黑盒適用性廣的優(yōu)勢就凸顯出來了。[5]軟件測試方法手動(dòng)測試和自動(dòng)化測試自動(dòng)化測試,顧名思義就是軟件測試的自動(dòng)化,即在預(yù)先設(shè)定的條件下運(yùn)行被測程序,并分析運(yùn)行結(jié)果。總的來說,這種測試方法就是將以人驅(qū)動(dòng)的測試行為轉(zhuǎn)化為機(jī)器執(zhí)行的一種過程。對(duì)于手動(dòng)測試,其在設(shè)計(jì)了測試用例之后,需要測試人員根據(jù)設(shè)計(jì)的測試用例一步一步來執(zhí)行測試得到實(shí)際結(jié)果,并將其與期望結(jié)果進(jìn)行比對(duì)。[5]軟件測試方法不同階段測試編輯軟件測試方法單元測試單元測試主要是對(duì)該軟件的模塊進(jìn)行測試,通過測試以發(fā)現(xiàn)該模塊的實(shí)際功能出現(xiàn)不符合的情況和編碼錯(cuò)誤。由于該模塊的規(guī)模不大,功能單一,結(jié)構(gòu)較簡單,且測試人員可通過閱讀源程序清楚知道其...
4)建立與用戶或客戶的聯(lián)系,收集他們對(duì)測試的需求和建議。(II)制訂技術(shù)培訓(xùn)計(jì)劃為高效率地完成好測試工作,測試人員必須經(jīng)過適當(dāng)?shù)呐嘤?xùn)。制訂技術(shù)培訓(xùn)規(guī)劃有3個(gè)子目標(biāo):1)制訂**的培訓(xùn)計(jì)劃,并在管理上提供包括經(jīng)費(fèi)在內(nèi)的支持。2)制訂培訓(xùn)目標(biāo)和具體的培訓(xùn)計(jì)劃。3)成立培訓(xùn)組,配備相應(yīng)的工具,設(shè)備和教材(III)軟件全生命周期測試提高測試成熟度和改善軟件產(chǎn)品質(zhì)量都要求將測試工作與軟件生命周期中的各個(gè)階段聯(lián)系起來。該目標(biāo)有4個(gè)子目標(biāo):1)將測試階段劃分為子階段,并與軟件生命周期的各階段相聯(lián)系。2)基于已定義的測試子階段,采用軟件生命周期V字模型。3)制訂與淵試相關(guān)的工作產(chǎn)品的標(biāo)準(zhǔn)。4)建立測試...
它已被擴(kuò)展成與軟件生命周期融為一體的一組已定義的活動(dòng)。測試活動(dòng)遵循軟件生命周期的V字模型。測試人員在需求分析階段便開始著手制訂測試計(jì)劃,并根據(jù)用戶或客戶需求建立測試目標(biāo),同時(shí)設(shè)計(jì)測試用例并制訂測試通過準(zhǔn)則。在集成級(jí)上,應(yīng)成立軟件測試**,提供測試技術(shù)培訓(xùn),關(guān)鍵的測試活動(dòng)應(yīng)有相應(yīng)的測試工具予以支持。在該測試成熟度等級(jí)上,沒有正式的評(píng)審程序,沒有建立質(zhì)量過程和產(chǎn)品屬性的測試度量。集成級(jí)要實(shí)現(xiàn)4個(gè)成熟度目標(biāo),它們分別是:建立軟件測試**,制訂技術(shù)培訓(xùn)計(jì)劃,軟件全壽命周期測試,控制和監(jiān)視測試過程。(I)建立軟件測試**軟件測試的過程及質(zhì)量對(duì)軟件產(chǎn)品質(zhì)量有直接影響。由于測試往往是在時(shí)間緊,壓力大...
12)把節(jié)裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標(biāo)志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統(tǒng)計(jì)差異:(1)證書表是軟件廠商的可認(rèn)證的聲明,惡意軟件很少有證書表,而良性軟件大部分都有軟件廠商可認(rèn)證的聲明;(2)惡意軟件的調(diào)試數(shù)據(jù)也明顯小于正常文件的,這是因?yàn)閻阂廛浖榱嗽黾诱{(diào)試的難度,很少有調(diào)試數(shù)據(jù);(3)惡意軟件4個(gè)節(jié)(.text、.rsrc、.reloc和.rdata)的characteristics屬性和良性軟件的也有明顯差異,characteristics屬性通常**該節(jié)是否可讀、可寫、可執(zhí)行等,部分惡意軟件的代...
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的...
的值不一定判定表法根據(jù)因果來制定判定表組成部分1條件樁:所有條件2動(dòng)作樁:所有結(jié)果3條件項(xiàng):針對(duì)條件樁的取值4動(dòng)作項(xiàng):針對(duì)動(dòng)作樁的取值不犯罪,不抽*是好男人,不喝酒是好男人,只要打媳婦就是壞男人條件樁1不犯罪1102不抽*1013不喝酒011動(dòng)作樁好男人11壞男人1場景法模擬用戶操作軟件時(shí)的場景,主要用于測試系統(tǒng)的業(yè)務(wù)流程先關(guān)注功能和業(yè)務(wù)是否正確實(shí)現(xiàn),然后再使用等價(jià)類和邊界值進(jìn)行檢測?;玖髡_的業(yè)務(wù)流程來實(shí)現(xiàn)一條操作路徑備選流模擬一條錯(cuò)誤的操作流程用例場景要從開始到結(jié)束便利用例中所有的基本流和備選流。流程分析法流程-路徑針對(duì)路徑使用路徑分析的方法設(shè)計(jì)測試用例降低測試用例設(shè)計(jì)難度,只要...
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖...
沒有滿足用戶的需求1未達(dá)到需求規(guī)格說明書表明的功能2出現(xiàn)了需求規(guī)格說明書指明不會(huì)出現(xiàn)的錯(cuò)誤3軟件功能超出了需求規(guī)格說明書指明的范圍4軟件質(zhì)量不夠高維護(hù)性移植性效率性可靠性易用性功能性健壯性等5軟件未達(dá)到軟件需求規(guī)格說明書未指出但是應(yīng)該達(dá)到的目標(biāo)計(jì)算器沒電了下次還得能正常使用6測試或用戶覺得不好軟件缺陷的表現(xiàn)形式1功能沒有完全實(shí)現(xiàn)2產(chǎn)品的實(shí)際結(jié)果和所期望的結(jié)果不一致3沒有達(dá)到需求規(guī)格說明書所規(guī)定的的性能指標(biāo)等4運(yùn)行出錯(cuò)斷電運(yùn)行終端系統(tǒng)崩潰5界面排版重點(diǎn)不突出,格式不統(tǒng)一6用戶不能接受的其他問題軟件缺陷產(chǎn)生的原因需求錯(cuò)誤需求記錄錯(cuò)誤設(shè)計(jì)說明錯(cuò)誤代碼錯(cuò)誤兼容性錯(cuò)誤時(shí)間不充足缺陷的信息缺陷id...
且4個(gè)隱含層中間間隔設(shè)置有dropout層。用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第二個(gè)神經(jīng)元的隱含層個(gè)數(shù)是10,且2個(gè)隱含層中間設(shè)置有dropout層。且所有dropout層的dropout率等于。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,中間融合模型的準(zhǔn)確率變化曲線如圖17所示,模型的對(duì)數(shù)損失變化曲線如圖18所示。從圖17和圖18可以看出,當(dāng)epoch值從0增加到20過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)...
這種傳統(tǒng)方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經(jīng)過簡單加殼或混淆后又不能檢測,且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測試,確保主流的反**軟件無法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件?;跀?shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可...
特征之間存在部分重疊,但特征類型間存在著互補(bǔ),融合這些不同抽象層次的特征可更好的識(shí)別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時(shí)偽造多個(gè)抽象層次的特征逃避檢測?;谠撚^點(diǎn),本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,以實(shí)現(xiàn)對(duì)惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準(zhǔn)確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)...
第三方軟件檢測機(jī)構(gòu)在開展第三方軟件測試的過程中,需要保持測試整體的嚴(yán)謹(jǐn)性,也需要對(duì)測試結(jié)果負(fù)責(zé)并確保公平公正性。所以,在測試過程中,軟件測試所使用的測試工具也是很重要的一方面。我們簡單介紹一下在軟件檢測過程中使用的那些軟件測試工具。眾所周知,軟件測試的參數(shù)項(xiàng)目包括功能性、性能、安全性等參數(shù),而其中出具軟件測試報(bào)告主要的就是性能測試和安全測試所需要使用到的工具了。一、軟件測試性能測試工具這個(gè)參數(shù)的測試工具有l(wèi)oadrunner,jmeter兩大主要工具,國產(chǎn)化性能測試軟件目前市場并未有比較大的突破,其中l(wèi)oadrunner是商業(yè)軟件測試工具,jmeter為開源社區(qū)版本的性能測試工具。從第...
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個(gè)單一的特征向量空間,然后將其作為深度神經(jīng)網(wǎng)絡(luò)模型的輸入,訓(xùn)練多模態(tài)深度集成模型;(2)方案二:首先利用訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型,合并訓(xùn)練的三個(gè)深度神經(jīng)網(wǎng)絡(luò)模型的決策輸出,并將其作為感知機(jī)的輸入,訓(xùn)練得到*...
I)應(yīng)用過程數(shù)據(jù)預(yù)防缺陷。這時(shí)的軟件**能夠記錄軟件缺陷,分析缺陷模式,識(shí)別錯(cuò)誤根源,制訂防止缺陷再次發(fā)生的計(jì)劃,提供**這種括動(dòng)的辦法,并將這些活動(dòng)貫穿于全**的各個(gè)項(xiàng)目中。應(yīng)用過程數(shù)據(jù)預(yù)防缺陷有礴個(gè)成熟度子目標(biāo):1)成立缺陷預(yù)防組。2)識(shí)別和記錄在軟件生命周期各階段引入的軟件缺陷和消除的缺陷。3)建立缺陷原因分析機(jī)制,確定缺陷原因。4)管理,開發(fā)和測試人員互相配合制訂缺陷預(yù)防計(jì)劃,防止已識(shí)別的缺陷再次發(fā)生。缺陷預(yù)防計(jì)劃要具有可**性。(II)質(zhì)量控制在本級(jí),軟件**通過采用統(tǒng)計(jì)采樣技術(shù),測量**的自信度,測量用戶對(duì)**的信賴度以及設(shè)定軟件可靠性目標(biāo)來推進(jìn)測試過程。為了加強(qiáng)軟件質(zhì)量控...
本書內(nèi)容充實(shí)、實(shí)用性強(qiáng),可作為高職高專院校計(jì)算機(jī)軟件軟件測試技術(shù)課程的教材,也可作為有關(guān)軟件測試的培訓(xùn)教材,對(duì)從事軟件測試實(shí)際工作的相關(guān)技術(shù)人員也具有一定的參考價(jià)值。目錄前言第1章軟件測試基本知識(shí)第2章測試計(jì)劃第3章測試設(shè)計(jì)和開發(fā)第4章執(zhí)行測試第5章測試技術(shù)與應(yīng)用第6章軟件測試工具第7章測試文檔實(shí)例附錄IEEE模板參考文獻(xiàn)軟件測試技術(shù)圖書3基本信息書號(hào):軟件測試技術(shù)7-113-07054作者:李慶義定價(jià):出版日期:套系名稱:21世紀(jì)高校計(jì)算機(jī)應(yīng)用技術(shù)系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡介本書主要介紹軟件適用測試技術(shù)。內(nèi)容分為三部分,***部分為概念基礎(chǔ)、測試?yán)碚摰谋尘凹鞍l(fā)展,簡要...