非線性光學(xué)顯微鏡利用受散射影響較小的較長波長激發(fā),而光學(xué)相干斷層掃描進一步利用相干時間門控來拒絕散射光子,但活組織中可實現(xiàn)的成像深度仍約為1-2毫米。另一方面,已經(jīng)建議基于自適應(yīng)光學(xué)或波前成形的方法來突破這個深度障礙,盡管在超過1毫米的深度的體內(nèi)適用性仍然具有挑戰(zhàn)性?!鴪D1.漫射光學(xué)定位成像(DOLI)的概念和微滴的表征。(a)DOLI設(shè)置的布局。單色激光束通過SWIR相機檢測到的背向散射熒光照射隱藏在散射介質(zhì)后面的熒光目標(biāo)。(b)用商業(yè)明場顯微鏡捕獲的微滴的WF圖像。(c)微滴直徑分布的直方圖。(d)定位和圖像形成工作流程。(e)用于測量PSF對散射介質(zhì)中目標(biāo)深度的依賴性的實驗裝置。(f)用...
更直觀和可靠的方式獲得他們需要的信息及幫助。這減少了員工花在內(nèi)部網(wǎng)站導(dǎo)航、信息搜索或咨詢同事的時間。他們還打算在客戶服務(wù)中采用這種聊天機器人,從而提高服務(wù)質(zhì)量和效率。2018Al趨勢預(yù)測站在2018年的開端,我列出了以下四個我認(rèn)為會在未來12個月內(nèi)出現(xiàn)的人工智能趨勢:2018年,人工智能將開始大規(guī)模應(yīng)用:如前文中提到的日本汽車制造商一樣,越來越多的公司將看到AI的價值,因此人工智能的應(yīng)用將在2018年開始飆升。據(jù)IDC預(yù)測,到2020年,全球人工智能收入將超過460億美元。到2021年,人工智能在亞太地區(qū)的投資預(yù)計將達到69億美元,增長73%(來源:CAGR)。無所不在的虛擬助手:我們將越來越...
涉及不同行業(yè)的語音識別、圖像分類、對象識別和語言等各種問題。如果說生態(tài)系統(tǒng)的基礎(chǔ)設(shè)施和分析部分已經(jīng)發(fā)展到后期的大多數(shù),那么對于企業(yè)和垂直人工智能應(yīng)用來說,我們?nèi)匀皇欠浅T缙诘南闰?qū)者。盡管人工智能初創(chuàng)市場可以說已經(jīng)顯示出終降溫的跡象,但以深度學(xué)習(xí)為基礎(chǔ)的初創(chuàng)企業(yè)在一兩年前開始暴增的情況依然在繼續(xù)。整體規(guī)模和估值的期望仍然很高,但我們肯定已經(jīng)經(jīng)過了這樣一個階段:大型互聯(lián)網(wǎng)企業(yè)會為了人才而高價收購早期人工智能初創(chuàng)企業(yè)。與其他一些利用這種的企業(yè)相比,市場中也出現(xiàn)了一些“真正”的人工智能初創(chuàng)企業(yè)。在2014~2016年期間成立的一些人工智能初創(chuàng)企業(yè)正開始初具規(guī)模,許多企業(yè)在醫(yī)療、金融、“工業(yè)”和后臺辦...
PSTBase系列是專門為滿足追蹤距離為20厘米至3米的用戶需求而設(shè)計,其基礎(chǔ)線追蹤以及小追蹤距離為20厘米。PSTBase是適用于桌面式動作捕捉或用于仿真設(shè)備的理想解決方案(例如,可用于汽車、飛機以及手術(shù)仿真或?qū)Ш?、機器視覺等)。PST光學(xué)定位儀系列產(chǎn)品均為提前校準(zhǔn)、即插即用的高精度系統(tǒng)。每臺PSTBase光學(xué)定位都是完全單獨的追蹤單元??芍苯娱_箱使用,無需校準(zhǔn)且捕捉攝像頭無需進行注冊。。PSTBase的數(shù)據(jù)結(jié)果可通過以太網(wǎng)進行完全透明分享。只需在另外一臺電腦上安裝客戶軟件并進行連接。PSTBase光學(xué)追蹤擁有穩(wěn)定的定位技術(shù)以及新穎的外觀光學(xué)追蹤器PSTBase使用3D定位技術(shù),可測量固定在...
機器人可以有皮膚——敏感觸覺技術(shù)觸覺機械手“GentleBot”抓取西紅柿敏感觸覺技術(shù)指采用基于電學(xué)和微粒子觸覺技術(shù)的新型觸覺傳感器,能讓機器人對物體的外形、質(zhì)地和硬度更加敏感,終勝任醫(yī)療、勘探等一系列復(fù)雜工作。5.“主動”交流——會話式智能交互技術(shù)曾經(jīng)揚言要毀滅人類的sophia機器人采用會話式智能交互技術(shù)研制的機器人不僅能理解用戶的問題并給出精細答案,還能在信息不全的情況下主動引導(dǎo)完成會話。蘋果公司新一代會話交互技術(shù)將會擺脫Siri一問一答的模式,甚至可以主動發(fā)起對話。6.機器人有心理活動——情感識別技術(shù)日本SBRH研發(fā)的Pepper對人的感情識別情感識別技術(shù)可實現(xiàn)對人類情感甚至是心理活動...
從節(jié)點浮標(biāo)按照自身序號信息在收到同步碼后延遲預(yù)定時隙廣播自身位置和探測目標(biāo)的方位信息,主浮標(biāo)累積該信息,以120s為周期隨同步碼廣播利用累積信息計算的目標(biāo)運動參數(shù)及自身位置,各浮標(biāo)接收該信息后進行空間對準(zhǔn)并獲取目標(biāo)位置。母船應(yīng)按照正多邊形布置浮標(biāo),若浮標(biāo)自帶動力可航行,各浮標(biāo)航路終點的拓撲結(jié)構(gòu)為正多邊形。按照測量孔徑原理,浮標(biāo)的優(yōu)布置位置呈直線等間隔布置且直線方向與目標(biāo)航向一致,這種布置能保證測量精度達到優(yōu),但實際使用時目標(biāo)航向是未知的,在這種條件下,優(yōu)的拓撲結(jié)構(gòu)仍為正多邊形布置,原因如下:1)保證目標(biāo)以任何航向航行或機動時,浮標(biāo)陣的綜合孔徑大;2)若浮標(biāo)無動力,可大程度節(jié)約布放母船的航行距離...
為解決單、雙光學(xué)浮標(biāo)無法獲得目標(biāo)全要素信息的問題,文中基于聲學(xué)目標(biāo)運動要素解算技術(shù),提出了一種多光學(xué)浮標(biāo)聯(lián)合定位算法,建立了包含浮標(biāo)定位誤差、觀測時間誤差和光學(xué)觀測模糊誤差的光學(xué)浮標(biāo)觀測數(shù)學(xué)模型,利用蒙特卡洛仿真方法給出了考慮上述誤差并針對機動目標(biāo)不同數(shù)量光學(xué)浮標(biāo)的定位精度指標(biāo),同時分析了各因素對多浮標(biāo)聯(lián)合定位的影響。文中研究為光學(xué)浮標(biāo)的工程應(yīng)用提供了數(shù)據(jù)支撐。引言光學(xué)浮標(biāo)是一種慣性導(dǎo)航、信號采集與處理、電機控制、微電子技術(shù)與數(shù)字圖像識別處理等諸多技術(shù),實現(xiàn)目標(biāo)識別和監(jiān)測的復(fù)雜設(shè)備。近年來,隨著電子信息技術(shù)的高速發(fā)展,光學(xué)浮標(biāo)技術(shù)取得了巨大進展并且越來越地應(yīng)用在領(lǐng)域,可以為無人水下航行器對...
涉及不同行業(yè)的語音識別、圖像分類、對象識別和語言等各種問題。如果說生態(tài)系統(tǒng)的基礎(chǔ)設(shè)施和分析部分已經(jīng)發(fā)展到后期的大多數(shù),那么對于企業(yè)和垂直人工智能應(yīng)用來說,我們?nèi)匀皇欠浅T缙诘南闰?qū)者。盡管人工智能初創(chuàng)市場可以說已經(jīng)顯示出終降溫的跡象,但以深度學(xué)習(xí)為基礎(chǔ)的初創(chuàng)企業(yè)在一兩年前開始暴增的情況依然在繼續(xù)。整體規(guī)模和估值的期望仍然很高,但我們肯定已經(jīng)經(jīng)過了這樣一個階段:大型互聯(lián)網(wǎng)企業(yè)會為了人才而高價收購早期人工智能初創(chuàng)企業(yè)。與其他一些利用這種的企業(yè)相比,市場中也出現(xiàn)了一些“真正”的人工智能初創(chuàng)企業(yè)。在2014~2016年期間成立的一些人工智能初創(chuàng)企業(yè)正開始初具規(guī)模,許多企業(yè)在醫(yī)療、金融、“工業(yè)”和后臺辦...
有時候直線的光路由于太長或者其它特殊的原因,需要直角轉(zhuǎn)折(特殊角度的轉(zhuǎn)折后面會單獨介紹)。以直角光學(xué)轉(zhuǎn)折為例,圖17a是目前市場上的籠式結(jié)構(gòu)直角轉(zhuǎn)折角轉(zhuǎn)折,籠桿采用了螺紋的方式和轉(zhuǎn)接件連接,精度不高;當(dāng)需要轉(zhuǎn)折后再轉(zhuǎn)折的時候,長度是固定尺寸,而且還需要特殊的輔助件才能實現(xiàn),很非常不方便。圖17b是多軸籠式結(jié)構(gòu)的直角轉(zhuǎn)折,不難看出與目前籠式結(jié)構(gòu)的直角轉(zhuǎn)折的區(qū)別,籠孔是通孔,定位精度非常高,兩個直角轉(zhuǎn)折件之間的距離可以任意調(diào)整,一般還是建議在平臺螺紋孔的位置,因為是25的倍數(shù),便于固定。如圖17b平板上的兩個螺釘,這個件看似簡單,卻起到了非常重要的作用,是一體化的重要基礎(chǔ)件,會通過實例介紹它的應(yīng)用...
光學(xué)被動消熱差設(shè)計實現(xiàn)了光學(xué)系統(tǒng)-40℃~60℃溫度范圍內(nèi)的無熱化設(shè)計。對目標(biāo)進行探測除了需要高性能的光學(xué)設(shè)計外,對目標(biāo)的輻射特性以及大氣傳輸特性的研究也十分必要。論文[3]針對現(xiàn)有空基紅外系統(tǒng)對作用距離的影響因素考慮較少的問題,開展空寂紅外系統(tǒng)作用距離建模研究,構(gòu)建了綜合目標(biāo)輻射特性、大氣溫度和紅外系統(tǒng)高度等因素的探測模型,在指導(dǎo)小目標(biāo)探測系統(tǒng)設(shè)計方面具有一定的應(yīng)用前景。與對空探測相比,采用航空光學(xué)成像的手段對海探測是近年來新興的熱點。論文[4]考慮了對海成像和海上目標(biāo)識別的應(yīng)用需求,建立了海面微面元的偏振雙向反射分布函數(shù)模型。與傳統(tǒng)的紅外強度成像相比,紅外偏振成像可以提供更多海面細節(jié)信息,...
光學(xué)導(dǎo)航系統(tǒng)(ONS)利用物理光學(xué)測量的方法,通過測量導(dǎo)航裝置和參考表面之間的相對運動的程度(速度和距離),進而確定相對位置和姿態(tài)信息。狹義的相對導(dǎo)航指的是探測器相對位置的確定,而廣義的相對導(dǎo)航包括了探測器相對位置和姿態(tài)估計。相對導(dǎo)航是以測量探測器之間或者探測器與目標(biāo)體之間相對距離、方位信息為基礎(chǔ),進而確定出某一探測器相對于其他探測器或目標(biāo)體的位置、姿態(tài)信息。通常,***導(dǎo)航給出的是探測器在某一慣性參考系下的坐標(biāo)、方位;而相對導(dǎo)航給出的是被導(dǎo)航探測器相對于非慣性系的位置坐標(biāo)。相對導(dǎo)航技術(shù)隨著近距離的交會任務(wù)的實施而不斷地發(fā)展、完善起來。近距離高精度的相對導(dǎo)航技術(shù)在航天器編隊飛行、空中加油和探測...
涉及不同行業(yè)的語音識別、圖像分類、對象識別和語言等各種問題。如果說生態(tài)系統(tǒng)的基礎(chǔ)設(shè)施和分析部分已經(jīng)發(fā)展到后期的大多數(shù),那么對于企業(yè)和垂直人工智能應(yīng)用來說,我們?nèi)匀皇欠浅T缙诘南闰?qū)者。盡管人工智能初創(chuàng)市場可以說已經(jīng)顯示出終降溫的跡象,但以深度學(xué)習(xí)為基礎(chǔ)的初創(chuàng)企業(yè)在一兩年前開始暴增的情況依然在繼續(xù)。整體規(guī)模和估值的期望仍然很高,但我們肯定已經(jīng)經(jīng)過了這樣一個階段:大型互聯(lián)網(wǎng)企業(yè)會為了人才而高價收購早期人工智能初創(chuàng)企業(yè)。與其他一些利用這種的企業(yè)相比,市場中也出現(xiàn)了一些“真正”的人工智能初創(chuàng)企業(yè)。在2014~2016年期間成立的一些人工智能初創(chuàng)企業(yè)正開始初具規(guī)模,許多企業(yè)在醫(yī)療、金融、“工業(yè)”和后臺...
即使在國內(nèi)外的一些科研院所依然還在被使用。3、光學(xué)系統(tǒng)的搭建基礎(chǔ)是什么?光學(xué)系統(tǒng)(OpticalSystem)是指由透鏡、反射鏡、棱鏡和光闌等多種光學(xué)元件按一定次序組合成的系統(tǒng)。通常用來成像或做光學(xué)信息處理,可以實現(xiàn)各種檢測。曲率中心在同一直線上的兩個或兩個以上折射(或反射)球面組成的光學(xué)系統(tǒng)稱為共軸球面系統(tǒng),曲率中心所在的那條直線稱為光軸。我們可以簡單地理解為兩個以上的光學(xué)元件組合使用,就構(gòu)成了光學(xué)系統(tǒng)。在光學(xué)平臺上搭建光學(xué)系統(tǒng)時,光軸是以光學(xué)平臺為基準(zhǔn)參考。目前傳統(tǒng)的每一個單獨調(diào)整架與光學(xué)平臺是有參考基準(zhǔn)的,但是系統(tǒng)中兩個調(diào)整架之間無基準(zhǔn)系統(tǒng),這是搭建光學(xué)系統(tǒng)的困難所在,通過觀看視頻1可以...
而精確度是指同一項目的測量彼此之間的接近程度。這樣,精度和準(zhǔn)確性都是單獨的。換句話說,可能非常準(zhǔn)確,但不是非常精確,反之亦然。達到比較好測量的準(zhǔn)確度和精度都很高。飛鏢盤是演示精度和準(zhǔn)確性之間差異的經(jīng)典方法。盤中心是準(zhǔn)心。飛鏢降落到離中心距離越近,其精度就越高。(左)如果飛鏢緊密地散布在中心附近,則既精確又精確。(中)如果所有的飛鏢都靠得很近,但是離中心很遠,即是精度,而不是準(zhǔn)確度。(右)如果飛鏢既不靠近中心也不彼此靠近,則既沒有精度也沒有準(zhǔn)確度。根據(jù)標(biāo)準(zhǔn)ISO5725-1,光學(xué)追蹤精度定義為真實性和精度的組合。真實度是測量值與真實位置之間的差;它通常由重復(fù)測量的平均值表示,通常指系統(tǒng)誤差。精度...
現(xiàn)已成為無線定位技術(shù)研究的熱點。目前市面上的虛擬現(xiàn)實仿真定位技術(shù)產(chǎn)品主要是:GPS衛(wèi)星定位、紅外定位、激光定位、低功耗藍牙定位、WiFi定位、超聲波定位還有ZigBee定位等等。以下就常用的技術(shù)產(chǎn)品簡單的介紹:一、GPS衛(wèi)星定位技術(shù)GPS衛(wèi)星定位技術(shù)是應(yīng)用廣的室外定位技術(shù)。GPS系統(tǒng)的基本原理在于利用由多顆工作衛(wèi)星所組成的太空部分,采用空間距離后方交會的方法,確定待測點的位置。其擁有全球范圍的有效覆蓋面積,系統(tǒng)比較成熟,定位服務(wù)比較完備,而且,可謂是非常理想的室外定位系統(tǒng)。但是其缺點也相當(dāng)明顯:信號受建筑物影響較大,衰弱很大,定位精度相對較低。而且在航線控制區(qū)域,它甚至?xí)耆珱]有信號。所以在V...
鏡頭是集聚光線,使膠卷能獲得清晰影像的結(jié)構(gòu)。早期的鏡頭都是由單片凸透鏡所構(gòu)成。因為清晰度不佳,又會產(chǎn)生色像差,而漸被改良成復(fù)式透鏡,即以多片凹凸透鏡的組合,來糾正各種像差或色差,并且借著鏡頭的加膜(coating)處理,增加進光量,減少耀光,使影像的素質(zhì)的提高。一般而言,攝影用的透鏡均為聚焦透鏡,依照光學(xué)原理、由遠處而來的光線穿過具有聚焦作用的透鏡后,會全部聚焦于一點,這一點即焦點。而從焦點到鏡頭的中心點之距離即稱焦距。在相機上,鏡頭的中心點通常都位于光圈處,而焦點位于焦點平面上(即膠卷面)。故相機的焦距為鏡頭對焦在無限遠時,光圈到膠卷間的距離。光學(xué)鏡頭是機器視覺系統(tǒng)中必不可少的部件,直接影響...
PSTBase是為仿真解決方案打造的理想光學(xué)定位交互系統(tǒng)PSTBase系列是專門為滿足定位距離為20厘米至3米的用戶需求而設(shè)計,其基礎(chǔ)線定位以及小追蹤距離為20厘米。PSTBase是適用于桌面式定位測量交互或用于仿真設(shè)備的理想解決方案(例如,可用于汽車、飛機以及手術(shù)仿真或?qū)Ш降龋?。PST的定位測量系列產(chǎn)品均為提前校準(zhǔn)、即插即用的高精度系統(tǒng)。每臺PSTBase都是完全單獨的測量單元。可直接開箱使用,無需校準(zhǔn)且捕捉攝像頭無需進行注冊。。PSTBase的數(shù)據(jù)結(jié)果可通過以太網(wǎng)進行完全透明分享。只需在另外一臺電腦上安a裝客戶軟件并進行連接。PSTBase光學(xué)追蹤擁有穩(wěn)定的定位技術(shù)以及新穎的外觀光學(xué)追蹤器...
非線性光學(xué)顯微鏡利用受散射影響較小的較長波長激發(fā),而光學(xué)相干斷層掃描進一步利用相干時間門控來拒絕散射光子,但活組織中可實現(xiàn)的成像深度仍約為1-2毫米。另一方面,已經(jīng)建議基于自適應(yīng)光學(xué)或波前成形的方法來突破這個深度障礙,盡管在超過1毫米的深度的體內(nèi)適用性仍然具有挑戰(zhàn)性。▲圖1.漫射光學(xué)定位成像(DOLI)的概念和微滴的表征。(a)DOLI設(shè)置的布局。單色激光束通過SWIR相機檢測到的背向散射熒光照射隱藏在散射介質(zhì)后面的熒光目標(biāo)。(b)用商業(yè)明場顯微鏡捕獲的微滴的WF圖像。(c)微滴直徑分布的直方圖。(d)定位和圖像形成工作流程。(e)用于測量PSF對散射介質(zhì)中目標(biāo)深度的依賴性的實驗裝置。(f)用...
d)分別表示了軌道誤差和姿態(tài)誤差對光學(xué)遙感影像定位精度的影響,可以用以下公式表示:不同于光學(xué)遙感影像的成像模型,SAR遙感影像通過舉例方程和多普勒方程來來進行定位。因此,影響SAR遙感影像的定位精度的因素主要由以下幾個方面:天線相位中心位置/速度測量精度、時間延遲測量精度以及地表高程的精度。其中時間延遲測量精度受內(nèi)定標(biāo)時延、大氣時延等多方面因素的影響;地表高程誤差則是由于實際處理時采用的外部高程數(shù)據(jù)源的誤差所引入,這一誤差在使用準(zhǔn)確高程時可以得到有效消除?;诰嚯x-多普勒模型的SAR遙感影像誤差分析已有的參考文獻較多,本文不再贅述。根據(jù)前文的分析,在多源遙感影像多重觀測的條件下,對衛(wèi)星姿軌參...
PSTBase光學(xué)定位導(dǎo)航系統(tǒng)PSTBase是為仿真解決方案打造的理想光學(xué)追蹤系統(tǒng)PSTBase光學(xué)定位導(dǎo)航系統(tǒng)是專為滿足追蹤距離從20厘米至3米的用戶需求而設(shè)計。PSTBase光學(xué)追蹤系統(tǒng)適用于醫(yī)療仿真、工業(yè)仿真(汽車仿真、飛機駕駛艙模擬器)、手術(shù)導(dǎo)航、動作捕捉、機器視覺等領(lǐng)域。PST定位導(dǎo)航系列產(chǎn)品均為預(yù)校準(zhǔn)、即插即用的高精度雙目紅外光學(xué)系統(tǒng)。每臺PSTBase都是完全單獨的追蹤單元。可直接開箱使用,無需校準(zhǔn)且捕捉攝像頭無需進行注冊。PSTBase的數(shù)據(jù)結(jié)果通過USB接口進行傳輸。也可通過以太網(wǎng)進行完全透明分享,只需在另外一臺電腦上安裝客戶軟件并進行連接。此外系統(tǒng)軟件采用抗干擾算法,如抖動...
發(fā)射的激光束沿著穿刺通道的反向延長線指向腹壁,從腹壁上的光斑插入消融針,即可準(zhǔn)確地達到并通過穿刺通道,實現(xiàn)對病灶的精確穿刺。腹腔鏡超聲探頭上的穿刺引導(dǎo)孔固定大小,當(dāng)使用小于引導(dǎo)孔直徑的穿刺針時,進針容易偏離原來方向,使用設(shè)計的錐形進針通道,可以很好地避免這一情況。產(chǎn)品對手術(shù)的幫助:1、輔助醫(yī)生快速確認(rèn)穿刺點;2、輔助醫(yī)生快速尋找穿刺引導(dǎo)孔且利于直線進針;3、輔助消融針快速進入穿刺引導(dǎo)孔。四、產(chǎn)品結(jié)構(gòu)組成腹腔鏡超聲光學(xué)定位導(dǎo)航裝置主要是由外殼、激光頭、保護蓋、磁控開關(guān)、內(nèi)置鋰電池和錐形進針通道構(gòu)成。(非無菌提供)本產(chǎn)品為非滅菌包裝,可以根據(jù)使用需要,配用本產(chǎn)品專業(yè)消毒盒進行低溫等離子或環(huán)氧乙烷滅...
當(dāng)追蹤目標(biāo)物粘貼marker之后,PST光學(xué)定位系統(tǒng)需要對其進行識別。在主窗口中按“Newtargetmodel”(新目標(biāo)模型)選項即可選擇訓(xùn)練頁面(請見下圖)。訓(xùn)練是“教”系統(tǒng)識別新追蹤目標(biāo)物的過程,即在PST攝像頭前面(追蹤范圍內(nèi))緩慢旋轉(zhuǎn)物體,系統(tǒng)根據(jù)marker點的位置關(guān)系對其進行識別并建模,然后該模型即可用于追蹤交互。訓(xùn)練步驟:1.在目標(biāo)物上添加四個或多個標(biāo)記點。將目標(biāo)物放置在PST工作空間中(無遮擋),清理該空間里所有其它追蹤目標(biāo)物和反光材料,因為在訓(xùn)練過程中如果有多個物體可能會造成目標(biāo)物識別錯誤。該過程可以訓(xùn)練多包含多達100個標(biāo)記點的單個目標(biāo)物。2.點擊“開始”按鈕,下圖顯示...
而精確度是指同一項目的測量彼此之間的接近程度。這樣,精度和準(zhǔn)確性都是單獨的。換句話說,可能非常準(zhǔn)確,但不是非常精確,反之亦然。達到較佳測量的準(zhǔn)確度和精度都很高。飛鏢盤是演示精度和準(zhǔn)確性之間差異的經(jīng)典方法。盤中心是準(zhǔn)心。飛鏢降落到離中心距離越近,其精度就越高。(左)如果飛鏢緊密地散布在中心附近,則既精確又精確。(中)如果所有的飛鏢都靠得很近,但是離中心很遠,即是精度,而不是準(zhǔn)確度。(右)如果飛鏢既不靠近中心也不彼此靠近,則既沒有精度也沒有準(zhǔn)確度。根據(jù)標(biāo)準(zhǔn)ISO5725-1,光學(xué)追蹤精度定義為真實性和精度的組合。真實度是測量值與真實位置之間的差;它通常由重復(fù)測量的平均值表示,通常指系統(tǒng)誤差。精度是...
因此采用仿真計算方式獲取實際工程的定位效果。構(gòu)建如下態(tài)勢:目標(biāo)艦干舷+橋樓有效高度為20m,浮標(biāo)高度為m,浮標(biāo)對目標(biāo)探測距離約12km,母船分別釋放不同數(shù)量浮標(biāo),浮標(biāo)正多邊形布置,孔徑(浮標(biāo)與相鄰近浮標(biāo)的距離)均為1000m,目標(biāo)在浮標(biāo)陣附近做正方形運動,目標(biāo)初距8km,處于浮標(biāo)陣正北方向,航向90°,速度18kn,當(dāng)目標(biāo)距浮標(biāo)陣中心距離大于12km時,目標(biāo)右轉(zhuǎn)向90°進行機動如圖5所示。圖5多光學(xué)浮標(biāo)聯(lián)合定位仿真場景圖光學(xué)浮標(biāo)測量周期為5s,浮標(biāo)探測誤差一倍均方差為°,流速Vflow=1kn,流向角αflow服從均值和0°,方差為20°的正態(tài)分布,船長Ls=120m,以120s為測量窗口對目...
同理壓圈寬度、螺距和起子槽的大小也按直徑范圍的選擇由條件語句完成。2.鏡筒兩端軸向尺寸為保護前鏡片,鏡筒的前端表面應(yīng)超出凸透鏡前表面某一預(yù)置尺寸。而鏡筒后端表面則要與壓圈后表面相平齊或稍為超出壓圈后表面。3.鏡筒臺階軸向尺寸位于鏡筒內(nèi)孔臺階處的隔圈和壓圈與臺階端面之間必須空出一些距離,以保證各零件尺寸有誤差時隔圈和壓圈都不得碰到臺階,這樣才能起到應(yīng)有的定位和壓緊作用。本設(shè)計的鏡筒臺階尺寸是根據(jù)透鏡的邊緣厚度來處理確定的。4.從裝配圖拆出零件圖利用AntoCAD獨特的圖層處理技術(shù),用戶根據(jù)需要設(shè)定若干圖層。將不同零件畫在不同層上,運用圖層的開啟關(guān)閉、凍結(jié)解凍的作用,就可以方便地從裝配圖上分離出某...
關(guān)于腹腔鏡探頭腹腔鏡超聲是指在醫(yī)學(xué)超聲成像設(shè)備上連接專業(yè)的腹腔鏡下使用的換能器(探頭),并使之直接接觸腹腔內(nèi)臟器而成像的超聲檢查方式。通過腹腔鏡超聲檢查,可以在腹腔鏡手術(shù)中獲得清晰的臟器內(nèi)部聲像圖,精確定位病灶和重要的組織結(jié)構(gòu)(如:重要的血管、膽管等)的實時空間位置,為準(zhǔn)確切除病變和減少組織損傷提供影像的引導(dǎo)。為了給腹腔鏡超聲引導(dǎo)的介入醫(yī)治提供準(zhǔn)確的影像引導(dǎo),腹腔鏡超聲換能器(探頭)上設(shè)計了一個獨特的穿刺引導(dǎo)通道,配合超聲聲像圖上相應(yīng)的穿刺引導(dǎo)線,可以實現(xiàn)非常精確的腹腔鏡超聲引導(dǎo)下的介入醫(yī)治。但是,由于建立氣腹后,腹壁和腹腔內(nèi)的臟器距離增加,使得手術(shù)醫(yī)生在選擇腹壁進針點時非常困難,必須和換能...
而精確度是指同一項目的測量彼此之間的接近程度。這樣,精度和準(zhǔn)確性都是單獨的。換句話說,可能非常準(zhǔn)確,但不是非常精確,反之亦然。達到比較好測量的準(zhǔn)確度和精度都很高。飛鏢盤是演示精度和準(zhǔn)確性之間差異的經(jīng)典方法。盤中心是準(zhǔn)心。飛鏢降落到離中心距離越近,其精度就越高。(左)如果飛鏢緊密地散布在中心附近,則既精確又精確。(中)如果所有的飛鏢都靠得很近,但是離中心很遠,即是精度,而不是準(zhǔn)確度。(右)如果飛鏢既不靠近中心也不彼此靠近,則既沒有精度也沒有準(zhǔn)確度。根據(jù)標(biāo)準(zhǔn)ISO5725-1,光學(xué)追蹤精度定義為真實性和精度的組合。真實度是測量值與真實位置之間的差;它通常由重復(fù)測量的平均值表示,通常指系統(tǒng)誤差。精度...
NDI)和兩個EM追蹤器的腹腔鏡的追蹤準(zhǔn)確性,該光學(xué)追蹤器追蹤安裝在軸上的回射標(biāo)記,而EM追蹤器將傳感器嵌入近端。然后,我們使用觸控筆測試追蹤器的位置測量精度和距離測量精度。,我們評估了由EM追蹤的腹腔鏡和EM追蹤的LUS探頭組成的圖像引導(dǎo)系統(tǒng)的準(zhǔn)確性。結(jié)果在使用標(biāo)準(zhǔn)評估板的實驗中,兩個光學(xué)追蹤器(Atracsys&NDI)在位置和方向測量中的抖動比EM追蹤器小。此外,光學(xué)追蹤器在測試體積內(nèi)顯示出更好的方向測量一致性。但是,它們的相對位置測量精度會隨著距離的增加而顯著降低,而EM追蹤器的性能卻是穩(wěn)定的。在50mm的距離處,兩個光學(xué)追蹤器(Atracsys&NDI)的RMS誤差分別為,而EM追蹤...
NDI)和兩個EM追蹤器的腹腔鏡的追蹤準(zhǔn)確性,該光學(xué)追蹤器追蹤安裝在軸上的回射標(biāo)記,而EM追蹤器將傳感器嵌入近端。然后,我們使用觸控筆測試追蹤器的位置測量精度和距離測量精度。,我們評估了由EM追蹤的腹腔鏡和EM追蹤的LUS探頭組成的圖像引導(dǎo)系統(tǒng)的準(zhǔn)確性。結(jié)果在使用標(biāo)準(zhǔn)評估板的實驗中,兩個光學(xué)追蹤器(Atracsys&NDI)在位置和方向測量中的抖動比EM追蹤器小。此外,光學(xué)追蹤器在測試體積內(nèi)顯示出更好的方向測量一致性。但是,它們的相對位置測量精度會隨著距離的增加而顯著降低,而EM追蹤器的性能卻是穩(wěn)定的。在50mm的距離處,兩個光學(xué)追蹤器(Atracsys&NDI)的RMS誤差分別為,而EM追蹤...
其定位精度約為40米量級。而通過對SAR遙感影像定位誤差源的相關(guān)文獻進行分析,本文借助基于有理多項式模型的無控立體平差模型和SAR遙感影像的時延校正模型,去除SAR遙感影像中存在的定位偏差,實驗結(jié)果如表3-1和3-2所示。通過對上表結(jié)果進行分析可知,經(jīng)過時延校正和立體平差后,三號SAR立體像對的定位精度可以達到3米左右?;谛U蟮娜朣AR立體像對和吉林一號多源光學(xué)遙感影像,以SAR立體像對中的匹配點作為虛擬控制點,建立多源光學(xué)/SAR遙感影像定位精度提升模型,并輔助以差異化權(quán)重設(shè)計策略,得到經(jīng)過校正后的多源光學(xué)/SAR遙感影像的定位精度,并將該結(jié)果與常用的兩種聯(lián)合平差模型和融合校正模型...