第三方軟件檢測怎么做

來源: 發(fā)布時(shí)間:2025-04-29

    嘗試了前端融合、后端融合和中間融合三種融合方法對(duì)進(jìn)行有效融合,有效提高了惡意軟件的準(zhǔn)確率,具備較好的泛化性能和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測的檢測方法檢測結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時(shí)偽造良性軟件的多個(gè)抽象層次的特征以逃避檢測,本發(fā)明實(shí)施例同時(shí)融合軟件的二進(jìn)制可執(zhí)行文件的多個(gè)抽象層次的特征,可準(zhǔn)確檢測出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測的檢測方法難以檢測出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發(fā)明實(shí)施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對(duì)實(shí)施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖**是本發(fā)明的一些實(shí)施例,對(duì)于本領(lǐng)域普通技術(shù)人員來講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。第三方測評(píng)顯示軟件運(yùn)行穩(wěn)定性達(dá)99.8%,未發(fā)現(xiàn)重大系統(tǒng)崩潰隱患。第三方軟件檢測怎么做

第三方軟件檢測怎么做,測評(píng)

    之所以被稱為黑盒測試是因?yàn)榭梢詫⒈粶y程序看成是一個(gè)無法打開的黑盒,而工作人員在不軟件測試方法考慮任何程序內(nèi)部結(jié)構(gòu)和特性的條件下,根據(jù)需求規(guī)格說明書設(shè)計(jì)測試實(shí)例,并檢查程序的功能是否能夠按照規(guī)范說明準(zhǔn)確無誤的運(yùn)行。其主要是對(duì)軟件界面和軟件功能進(jìn)行測試。對(duì)于黑盒測試行為必須加以量化才能夠有效的保證軟件的質(zhì)量。[5](2)白盒測試。其與黑盒測試不同,它主要是借助程序內(nèi)部的邏輯和相關(guān)信息,通過檢測內(nèi)部動(dòng)作是否按照設(shè)計(jì)規(guī)格說明書的設(shè)定進(jìn)行,檢查每一條通路能否正常工作。白盒測試是從程序結(jié)構(gòu)方面出發(fā)對(duì)測試用例進(jìn)行設(shè)計(jì)。其主要用于檢查各個(gè)邏輯結(jié)構(gòu)是否合理,對(duì)應(yīng)的模塊**路徑是否正常以及內(nèi)部結(jié)構(gòu)是否有效。常用的白盒測試法有控制流分析、數(shù)據(jù)流分析、路徑分析、程序變異等,其中邏輯覆蓋法是主要的測試方法。[5](3)灰盒測試。灰盒測試則介于黑盒測試和白盒測試之間。灰盒測試除了重視輸出相對(duì)于出入的正確性,也看重其內(nèi)部表現(xiàn)。但是它不可能像白盒測試那樣詳細(xì)和完整。它只是簡單的靠一些象征性的現(xiàn)象或標(biāo)志來判斷其內(nèi)部的運(yùn)行情況,因此在內(nèi)部結(jié)果出現(xiàn)錯(cuò)誤,但輸出結(jié)果正確的情況下可以采取灰盒測試方法。因?yàn)樵诖饲闆r下灰盒比白盒**。成都計(jì)算機(jī)軟件檢測報(bào)告兼容性測試涵蓋35款設(shè)備,通過率91.4%。

第三方軟件檢測怎么做,測評(píng)

    3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,(12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志。存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無證書表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。生成軟件樣本的字節(jié)碼n-grams特征視圖,是統(tǒng)計(jì)了每個(gè)短序列特征的詞頻(termfrequency,tf),即該短序列特征在軟件樣本中出現(xiàn)的頻率。先從當(dāng)前軟件樣本的所有短序列特征中選取詞頻tf**高的多個(gè)短序列特征;然后計(jì)算選取的每個(gè)短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個(gè)短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強(qiáng);**后在選取的詞頻tf**高的多個(gè)短序列特征中選取,生成字節(jié)碼n-grams特征視圖。:=tf×idf;tf(termfrequency)是詞頻,定義如下:其中,ni,j是短序列特征i在軟件樣本j中出現(xiàn)的次數(shù),∑knk,j指軟件樣本j中所有短序列特征出現(xiàn)的次數(shù)之和。

    [3]軟件測試方法原則編輯1.盡早不斷測試的原則應(yīng)當(dāng)盡早不斷地進(jìn)行軟件測試。據(jù)統(tǒng)計(jì)約60%的錯(cuò)誤來自設(shè)計(jì)以前,并且修正一個(gè)軟件錯(cuò)誤所需的費(fèi)用將隨著軟件生存周期的進(jìn)展而上升。錯(cuò)誤發(fā)現(xiàn)得越早,修正它所需的費(fèi)用就越少。[4]測試用例由測試輸入數(shù)據(jù)和與之對(duì)應(yīng)的預(yù)期輸出結(jié)果這兩部分組成。[4]3.**測試原則(1)**測試原則。這是指軟件測試工作由在經(jīng)濟(jì)上和管理上**于開發(fā)機(jī)構(gòu)的**進(jìn)行。程序員應(yīng)避免檢査自己的程序,程序設(shè)計(jì)機(jī)構(gòu)也不應(yīng)測試自己開發(fā)的程序。軟件開發(fā)者難以客觀、有效地測試自己的軟件,而找出那些因?yàn)閷?duì)需求的誤解而產(chǎn)生的錯(cuò)誤就更加困難。[4](2)合法和非合法原則。在設(shè)計(jì)時(shí),測試用例應(yīng)當(dāng)包括合法的輸入條件和不合法的輸入條件。[4](3)錯(cuò)誤群集原則。軟件錯(cuò)誤呈現(xiàn)群集現(xiàn)象。經(jīng)驗(yàn)表明,某程序段剩余的錯(cuò)誤數(shù)目與該程序段中已發(fā)現(xiàn)的錯(cuò)誤數(shù)目成正比,所以應(yīng)該對(duì)錯(cuò)誤群集的程序段進(jìn)行重點(diǎn)測試。[4](4)嚴(yán)格性原則。嚴(yán)格執(zhí)行測試計(jì)劃,排除測試的隨意性。[4](5)覆蓋原則。應(yīng)當(dāng)對(duì)每一個(gè)測試結(jié)果做***的檢查。[4](6)定義功能測試原則。檢查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不屬于它做的事。[4](7)回歸測試原則。應(yīng)妥善保留測試用例。艾策檢測團(tuán)隊(duì)采用多模態(tài)傳感器融合技術(shù),構(gòu)建智能工廠設(shè)備狀態(tài)健康監(jiān)測體系。

第三方軟件檢測怎么做,測評(píng)

    并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測試樣本進(jìn)行檢測并得出檢測結(jié)果。實(shí)驗(yàn)結(jié)果與分析(1)樣本數(shù)據(jù)集選取實(shí)驗(yàn)評(píng)估使用了不同時(shí)期的惡意軟件和良性軟件樣本,包含了7871個(gè)良性軟件樣本和8269個(gè)惡意軟件樣本,其中4103個(gè)惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個(gè)惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個(gè)良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個(gè)良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計(jì)82697871(2)評(píng)價(jià)指標(biāo)及方法分類性能主要用兩個(gè)指標(biāo)來評(píng)估:準(zhǔn)確率和對(duì)數(shù)損失。準(zhǔn)確率測量所有預(yù)測中正確預(yù)測的樣本占總樣本的比例,*憑準(zhǔn)確率通常不足以評(píng)估預(yù)測的魯棒性,因此還需要使用對(duì)數(shù)損失。對(duì)數(shù)損失(logarithmicloss),也稱交叉熵?fù)p失(cross-entropyloss),是在概率估計(jì)上定義的,用于測量預(yù)測類別與真實(shí)類別之間的差距大小。數(shù)據(jù)安全與合規(guī):艾策科技的最佳實(shí)踐。南京軟件評(píng)測機(jī)構(gòu)

用戶體驗(yàn)測評(píng)中界面交互評(píng)分低于同類產(chǎn)品均值15.6%。第三方軟件檢測怎么做

    先將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別輸入至一個(gè)深度神經(jīng)網(wǎng)絡(luò)中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行模型訓(xùn)練,得到多模態(tài)深度集成模型。進(jìn)一步的,所述多模態(tài)深度集成模型的隱藏層的***函數(shù)采用relu,輸出層的***函數(shù)采用sigmoid,中間使用dropout層進(jìn)行正則化,優(yōu)化器采用adagrad。進(jìn)一步的,所述訓(xùn)練得到的多模態(tài)深度集成模型中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,且3個(gè)隱含層中間間隔設(shè)置有dropout層;用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,且4個(gè)隱含層中間間隔設(shè)置有dropout層;用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;所述dropout層的dropout率均等于。本發(fā)明實(shí)施例的有益效果是,提出了一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,應(yīng)用了多模態(tài)深度學(xué)習(xí)方法來融合dll和api、格式結(jié)構(gòu)信息、字節(jié)碼n-grams特征。第三方軟件檢測怎么做

標(biāo)簽: 測評(píng)