在數(shù)字化轉(zhuǎn)型加速的,軟件檢測(cè)公司已成為保障各行業(yè)信息化系統(tǒng)穩(wěn)定運(yùn)行的力量。深圳艾策信息科技有限公司作為國(guó)內(nèi)軟件檢測(cè)公司領(lǐng)域的企業(yè),始終以技術(shù)創(chuàng)新為驅(qū)動(dòng)力,深耕電力能源、科研教育、政企單位、研發(fā)科技及醫(yī)療機(jī)構(gòu)等垂直場(chǎng)景,為客戶提供從需求分析到運(yùn)維優(yōu)化的全鏈條質(zhì)量保障服務(wù)。以專業(yè)能力筑牢行業(yè)壁壘作為專注于軟件檢測(cè)的技術(shù)型企業(yè),艾策科技通過(guò)AI驅(qū)動(dòng)的智能檢測(cè)平臺(tái),實(shí)現(xiàn)了測(cè)試流程的自動(dòng)化、化與智能化。其產(chǎn)品——軟件檢測(cè)系統(tǒng),整合漏洞掃描、壓力測(cè)試、合規(guī)性驗(yàn)證等20余項(xiàng)功能模塊,可快速定位代碼缺陷、性能瓶頸及安全風(fēng)險(xiǎn),幫助客戶將軟件故障率降低60%以上。針對(duì)電力能源行業(yè),艾策科技開(kāi)發(fā)了電網(wǎng)調(diào)度系統(tǒng)專項(xiàng)檢測(cè)方案,成功保障某省級(jí)電力公司百萬(wàn)級(jí)用戶數(shù)據(jù)安全;在科研教育領(lǐng)域,其實(shí)驗(yàn)室管理軟件檢測(cè)服務(wù)覆蓋全國(guó)50余所高校,助力科研數(shù)據(jù)存儲(chǔ)與分析的合規(guī)性升級(jí)。此外,公司為政企單位政務(wù)云平臺(tái)、研發(fā)科技企業(yè)創(chuàng)新產(chǎn)品、醫(yī)療機(jī)構(gòu)智慧醫(yī)療系統(tǒng)提供的定制化檢測(cè)服務(wù),均獲得客戶高度認(rèn)可。差異化服務(wù)塑造行業(yè)作為軟件檢測(cè)公司,艾策科技突破傳統(tǒng)檢測(cè)模式,推出“檢測(cè)+培訓(xùn)+咨詢”一體化服務(wù)體系。通過(guò)定期發(fā)布行業(yè)安全白皮書(shū)、舉辦技術(shù)研討會(huì)。艾策紡織品檢測(cè)實(shí)驗(yàn)室配備氣候老化模擬艙,驗(yàn)證戶外用品的耐久性與色牢度。吉林軟件檢測(cè)公司
所以第三方軟件檢測(cè)機(jī)構(gòu)可以說(shuō)是使用loadrunner軟件工具較多的一個(gè)業(yè)務(wù)領(lǐng)域,也能保證軟件測(cè)試報(bào)告結(jié)果的性能準(zhǔn)確。二、軟件測(cè)試漏洞掃描工具在客戶需要的軟件測(cè)試報(bào)告中,軟件安全的滲透測(cè)試和漏洞掃描一般會(huì)作為信息安全性的軟件測(cè)試報(bào)告內(nèi)容。首先來(lái)說(shuō)一下漏洞掃描的工具,這部分在國(guó)際上有ibm很出名的一個(gè)掃描測(cè)試工具appscan,以及針對(duì)web等的全量化掃描器nessus。國(guó)產(chǎn)的目前的綠盟漏洞掃描設(shè)備也做得非常好,個(gè)人其實(shí)更建議用綠盟的漏洞掃描設(shè)備,規(guī)則全,掃描速度快,測(cè)試報(bào)告也更符合國(guó)情。三、軟件測(cè)試滲透測(cè)試工具滲透測(cè)試屬于第三方軟件檢測(cè)測(cè)評(píng)過(guò)程中的比較專業(yè)的一個(gè)測(cè)試項(xiàng),對(duì)技術(shù)的要求也比較高,一般使用的工具為burpsuite這個(gè)專業(yè)安全工具,這個(gè)工具挺全能的,不光是安全服務(wù)常用的工具,同樣也認(rèn)可作為軟件滲透測(cè)試的工具輸出??偟膩?lái)說(shuō),第三方軟件檢測(cè)的那些軟件測(cè)試工具,都是為了確保軟件測(cè)試報(bào)告結(jié)果的整體有效性來(lái)進(jìn)行使用,也是第三方檢測(cè)機(jī)構(gòu)作為自主實(shí)驗(yàn)室的這個(gè)性質(zhì),提供了具備正規(guī)效力的軟件測(cè)試過(guò)程和可靠的第三方檢測(cè)結(jié)果,所以客戶可以有一個(gè)初步的軟件測(cè)試工具了解,也對(duì)獲取一份有效的第三方軟件測(cè)試報(bào)告的結(jié)果可以有更清楚的認(rèn)識(shí)。蘭州軟件測(cè)評(píng)中心性能基準(zhǔn)測(cè)試GPU利用率未達(dá)理論最大值67%。
將三種模態(tài)特征和三種融合方法的結(jié)果進(jìn)行了對(duì)比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態(tài)特征的檢測(cè)準(zhǔn)確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優(yōu)于基于dll和api信息、pe格式結(jié)構(gòu)特征的實(shí)驗(yàn)結(jié)果,但稍弱于基于字節(jié)碼3-grams特征的結(jié)果。中間融合是三種融合方法中**好的,各項(xiàng)性能指標(biāo)都非常接近**優(yōu)值。表3實(shí)驗(yàn)結(jié)果對(duì)比本實(shí)施例提出了基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過(guò)三種融合方式(前端融合、后端融合、中間融合)集成三種模態(tài)的特征,有效提高惡意軟件檢測(cè)的準(zhǔn)確率和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為,各項(xiàng)性能指標(biāo)已接近**優(yōu)值。考慮到樣本集可能存在噪聲,本實(shí)施例提出的方法已取得了比較理想的結(jié)果。由于惡意軟件很難同時(shí)偽造多個(gè)模態(tài)的特征,本實(shí)施例提出的方法比單模態(tài)特征方法更魯棒。以上所述*為本發(fā)明的較佳實(shí)施例而已,并非用于限定本發(fā)明的保護(hù)范圍。
綜合上面的分析可以看出,惡意軟件的格式信息和良性軟件是有很多差異性的,以可執(zhí)行文件的格式信息作為特征,是識(shí)別已知和未知惡意軟件的可行方法。對(duì)每個(gè)樣本進(jìn)行格式結(jié)構(gòu)解析,提取**每個(gè)樣本實(shí)施例件的格式結(jié)構(gòu)信息,可執(zhí)行文件的格式規(guī)范都由操作系統(tǒng)廠商給出,按照操作系統(tǒng)廠商給出的格式規(guī)范提取即可。pe文件的格式結(jié)構(gòu)有許多屬性,但大多數(shù)屬性無(wú)法區(qū)分惡意軟件和良性軟件,經(jīng)過(guò)深入分析pe文件的格式結(jié)構(gòu)屬性,提取了可能區(qū)分惡意軟件和良性軟件的136個(gè)格式結(jié)構(gòu)屬性,如表2所示。表2可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)屬性特征描述數(shù)量(個(gè))引用dll的總數(shù)1引用api的總數(shù)1導(dǎo)出表中符號(hào)的總數(shù)1重定位節(jié)的項(xiàng)目總數(shù),連續(xù)的幾個(gè)字節(jié)可能是完成特定功能的一段代碼,或者是可執(zhí)行文件的結(jié)構(gòu)信息,也可能是某個(gè)惡意軟件中特有的字節(jié)碼序列。pe文件可表示為字節(jié)碼序列,惡意軟件可能存在一些共有的字節(jié)碼子序列模式,研究人員直覺(jué)上認(rèn)為一些字節(jié)碼子序列在惡意軟件可能以較高頻率出現(xiàn),且這些字節(jié)碼序列和良性軟件字節(jié)碼序列存在明顯差異??蓤?zhí)行文件通常是二進(jìn)制文件,需要把二進(jìn)制文件轉(zhuǎn)換為十六進(jìn)制的文本實(shí)施例件,就得到可執(zhí)行文件的十六進(jìn)制字節(jié)碼序列。整合多學(xué)科團(tuán)隊(duì)的定制化檢測(cè)方案,體現(xiàn)艾策服務(wù)于制造的技術(shù)深度。
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例?;诒景l(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒(méi)有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍??煽啃栽u(píng)估連續(xù)運(yùn)行72小時(shí)出現(xiàn)2次非致命錯(cuò)誤。云南軟件評(píng)測(cè)機(jī)構(gòu)
安全掃描確認(rèn)軟件通過(guò)ISO 27001標(biāo)準(zhǔn),無(wú)高危漏洞記錄。吉林軟件檢測(cè)公司
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。進(jìn)一步的,所述生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。進(jìn)一步的,所述從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開(kāi)始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來(lái)自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,。吉林軟件檢測(cè)公司