程序利用windows提供的接口(windowsapi)實(shí)現(xiàn)程序的功能。通過一個(gè)可執(zhí)行程序引用的動(dòng)態(tài)鏈接庫(dll)和應(yīng)用程序接口(api)可以粗略的預(yù)測(cè)該程序的功能和行為。統(tǒng)計(jì)所有樣本的導(dǎo)入節(jié)中引用的dll和api的頻率,留下引用頻率**高的60個(gè)dll和500個(gè)api。提取特征時(shí),每個(gè)樣本的導(dǎo)入節(jié)里存在選擇出的dll或api,該特征以1表示,不存在則以0表示,提取的560個(gè)dll和api特征作為***個(gè)特征視圖。提取格式信息特征視圖pe是portableexecutable的縮寫,初衷是希望能開發(fā)一個(gè)在所有windows平臺(tái)上和所有cpu上都可執(zhí)行的通用文件格式。pe格式文件是封裝windows操作系統(tǒng)加載程序所需的信息和管理可執(zhí)行代碼的數(shù)據(jù)結(jié)構(gòu),數(shù)據(jù)**是大量的字節(jié)碼和數(shù)據(jù)結(jié)構(gòu)的有機(jī)融合。pe文件格式被**為一個(gè)線性的數(shù)據(jù)流,由pe文件頭、節(jié)表和節(jié)實(shí)體組成。惡意軟件或被惡意軟件***的可執(zhí)行文件,它本身也遵循格式要求的約束,但可能存在以下特定格式異常:(1)代碼從**后一節(jié)開始執(zhí)行;(2)節(jié)頭部可疑的屬性;(3)pe可選頭部有效尺寸的值不正確;(4)節(jié)之間的“間縫”;(5)可疑的代碼重定向;(6)可疑的代碼節(jié)名稱;(7)可疑的頭部***;(8)來自;(9)導(dǎo)入地址表被修改;(10)多個(gè)pe頭部;(11)可疑的重定位信息;。跨設(shè)備測(cè)試報(bào)告指出平板端UI元素存在比例失調(diào)問題。東成軟件檢測(cè)報(bào)告
坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對(duì)數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。貴陽軟件測(cè)評(píng)實(shí)驗(yàn)室創(chuàng)新光譜分析技術(shù)賦能艾策檢測(cè),實(shí)現(xiàn)食品藥品中微量有害物質(zhì)的超痕量檢測(cè)。
這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類,能檢測(cè)的已知惡意軟件經(jīng)過簡(jiǎn)單加殼或混淆后又不能檢測(cè),且使用多態(tài)變形技術(shù)的惡意軟件在傳播過程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒有固定的特征,使用該方法也不能檢測(cè)。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測(cè)這些惡意軟件?;跀?shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來訓(xùn)練分類模型,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率。受文本分類方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。
嘗試了前端融合、后端融合和中間融合三種融合方法對(duì)進(jìn)行有效融合,有效提高了惡意軟件的準(zhǔn)確率,具備較好的泛化性能和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法檢測(cè)結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時(shí)偽造良性軟件的多個(gè)抽象層次的特征以逃避檢測(cè),本發(fā)明實(shí)施例同時(shí)融合軟件的二進(jìn)制可執(zhí)行文件的多個(gè)抽象層次的特征,可準(zhǔn)確檢測(cè)出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法難以檢測(cè)出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發(fā)明實(shí)施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對(duì)實(shí)施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡(jiǎn)單地介紹,顯而易見地,下面描述中的附圖**是本發(fā)明的一些實(shí)施例,對(duì)于本領(lǐng)域普通技術(shù)人員來講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。兼容性測(cè)試涵蓋35款設(shè)備,通過率91.4%。
本書內(nèi)容充實(shí)、實(shí)用性強(qiáng),可作為高職高專院校計(jì)算機(jī)軟件軟件測(cè)試技術(shù)課程的教材,也可作為有關(guān)軟件測(cè)試的培訓(xùn)教材,對(duì)從事軟件測(cè)試實(shí)際工作的相關(guān)技術(shù)人員也具有一定的參考價(jià)值。目錄前言第1章軟件測(cè)試基本知識(shí)第2章測(cè)試計(jì)劃第3章測(cè)試設(shè)計(jì)和開發(fā)第4章執(zhí)行測(cè)試第5章測(cè)試技術(shù)與應(yīng)用第6章軟件測(cè)試工具第7章測(cè)試文檔實(shí)例附錄IEEE模板參考文獻(xiàn)軟件測(cè)試技術(shù)圖書3基本信息書號(hào):軟件測(cè)試技術(shù)7-113-07054作者:李慶義定價(jià):出版日期:套系名稱:21世紀(jì)高校計(jì)算機(jī)應(yīng)用技術(shù)系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡(jiǎn)介本書主要介紹軟件適用測(cè)試技術(shù)。內(nèi)容分為三部分,***部分為概念基礎(chǔ)、測(cè)試?yán)碚摰谋尘凹鞍l(fā)展,簡(jiǎn)要地分析了當(dāng)前測(cè)試技術(shù)的現(xiàn)狀;第二部分介紹軟件測(cè)試的程序分析技術(shù)、測(cè)試技術(shù),軟件測(cè)試的方法和策略,分析了軟件業(yè)在測(cè)試方面的研究成果,并總結(jié)了測(cè)試的基本原則和一些好的實(shí)踐經(jīng)驗(yàn);第三部分介紹了兩種測(cè)試工具軟件——基于Windows的WinRunner和服務(wù)器負(fù)載測(cè)試軟件WAS。本書結(jié)合實(shí)際,從一些具體的實(shí)例出發(fā),介紹軟件測(cè)試的一些基本概念和方法,分析出軟件測(cè)試的基本理論知識(shí),適用性比較強(qiáng)。深圳艾策信息科技:賦能中小企業(yè)的數(shù)字化未來。南京第三方軟件測(cè)試公司
數(shù)據(jù)安全與合規(guī):艾策科技的最佳實(shí)踐。東成軟件檢測(cè)報(bào)告
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測(cè)試樣本,并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。進(jìn)一步的,所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,是先對(duì)當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,然后按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示,是先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征。進(jìn)一步的,采用3-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng)產(chǎn)生連續(xù)部分重疊的短序列特征。進(jìn)一步的。東成軟件檢測(cè)報(bào)告