軟件檢測(cè)報(bào)告在哪里辦

來(lái)源: 發(fā)布時(shí)間:2025-04-15

    嘗試了前端融合、后端融合和中間融合三種融合方法對(duì)進(jìn)行有效融合,有效提高了惡意軟件的準(zhǔn)確率,具備較好的泛化性能和魯棒性。實(shí)驗(yàn)結(jié)果顯示,相對(duì)**且互補(bǔ)的特征視圖和不同深度學(xué)習(xí)融合機(jī)制的使用明顯提高了檢測(cè)方法的檢測(cè)能力和泛化性能,其中較優(yōu)的中間融合方法取得了%的準(zhǔn)確率,對(duì)數(shù)損失為,auc值為。有效解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法檢測(cè)結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳的問(wèn)題。另外,惡意軟件很難同時(shí)偽造良性軟件的多個(gè)抽象層次的特征以逃避檢測(cè),本發(fā)明實(shí)施例同時(shí)融合軟件的二進(jìn)制可執(zhí)行文件的多個(gè)抽象層次的特征,可準(zhǔn)確檢測(cè)出偽造良性軟件特征的惡意軟件,解決了現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法難以檢測(cè)出偽造良性軟件特征的惡意軟件的問(wèn)題。附圖說(shuō)明為了更清楚地說(shuō)明本發(fā)明實(shí)施例或現(xiàn)有技術(shù)中的技術(shù)方案,下面將對(duì)實(shí)施例或現(xiàn)有技術(shù)描述中所需要使用的附圖作簡(jiǎn)單地介紹,顯而易見(jiàn)地,下面描述中的附圖**是本發(fā)明的一些實(shí)施例,對(duì)于本領(lǐng)域普通技術(shù)人員來(lái)講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。深圳艾策信息科技:賦能中小企業(yè)的數(shù)字化未來(lái)。軟件檢測(cè)報(bào)告在哪里辦

軟件檢測(cè)報(bào)告在哪里辦,測(cè)評(píng)

    在不知道多長(zhǎng)的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的短序列,由機(jī)器學(xué)習(xí)方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以3-grams產(chǎn)生連續(xù)部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個(gè)短序列。每個(gè)短序列特征的權(quán)重表示有多種方法。**簡(jiǎn)單的方法是如果該短序列在具體樣本中出現(xiàn),就表示為1;如果沒(méi)有出現(xiàn),就表示為0,也可以用。本實(shí)施例采用3-grams方法提取特征,3-grams產(chǎn)生的短序列非常龐大,將產(chǎn)生224=(16,777,216)個(gè)特征,如此龐大的特征集在計(jì)算機(jī)內(nèi)存中存儲(chǔ)和算法效率上都是問(wèn)題。如果短序列特征的tf較小,對(duì)機(jī)器學(xué)習(xí)可能沒(méi)有意義,選取了tf**高的5000個(gè)短序列特征,計(jì)算每個(gè)短序列特征的,每個(gè)短序列特征的權(quán)重是判斷其所在軟件樣本是否為惡意軟件的依據(jù),也是區(qū)分每個(gè)軟件樣本的依據(jù)。(4)前端融合前端融合的架構(gòu)如圖4所示,前端融合方式將三種模態(tài)的特征合并,然后輸入深度神經(jīng)網(wǎng)絡(luò),隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器。廈門軟件測(cè)評(píng)第三方實(shí)驗(yàn)室驗(yàn)證數(shù)據(jù)處理速度較上代提升1.8倍。

軟件檢測(cè)報(bào)告在哪里辦,測(cè)評(píng)

    optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達(dá)局部**優(yōu)解的過(guò)程就是梯度下降的過(guò)程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個(gè)epoch,整個(gè)訓(xùn)練集被使用的總次數(shù)就是epoch的值。epoch值的變化會(huì)影響深度神經(jīng)網(wǎng)絡(luò)的權(quán)重值的更新次數(shù)。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,前端融合模型的準(zhǔn)確率變化曲線如圖5所示,模型的對(duì)數(shù)損失變化曲線如圖6所示。從圖5和圖6可以看出,當(dāng)epoch值從0增加到5過(guò)程中,模型的驗(yàn)證準(zhǔn)確率和驗(yàn)證對(duì)數(shù)損失有一定程度的波動(dòng);當(dāng)epoch值從5到50的過(guò)程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率基本不變,訓(xùn)練和驗(yàn)證對(duì)數(shù)損失基本不變;綜合分析圖5和圖6的準(zhǔn)確率和對(duì)數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。前端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖7所示,規(guī)范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。

    之所以被稱為黑盒測(cè)試是因?yàn)榭梢詫⒈粶y(cè)程序看成是一個(gè)無(wú)法打開(kāi)的黑盒,而工作人員在不軟件測(cè)試方法考慮任何程序內(nèi)部結(jié)構(gòu)和特性的條件下,根據(jù)需求規(guī)格說(shuō)明書(shū)設(shè)計(jì)測(cè)試實(shí)例,并檢查程序的功能是否能夠按照規(guī)范說(shuō)明準(zhǔn)確無(wú)誤的運(yùn)行。其主要是對(duì)軟件界面和軟件功能進(jìn)行測(cè)試。對(duì)于黑盒測(cè)試行為必須加以量化才能夠有效的保證軟件的質(zhì)量。[5](2)白盒測(cè)試。其與黑盒測(cè)試不同,它主要是借助程序內(nèi)部的邏輯和相關(guān)信息,通過(guò)檢測(cè)內(nèi)部動(dòng)作是否按照設(shè)計(jì)規(guī)格說(shuō)明書(shū)的設(shè)定進(jìn)行,檢查每一條通路能否正常工作。白盒測(cè)試是從程序結(jié)構(gòu)方面出發(fā)對(duì)測(cè)試用例進(jìn)行設(shè)計(jì)。其主要用于檢查各個(gè)邏輯結(jié)構(gòu)是否合理,對(duì)應(yīng)的模塊**路徑是否正常以及內(nèi)部結(jié)構(gòu)是否有效。常用的白盒測(cè)試法有控制流分析、數(shù)據(jù)流分析、路徑分析、程序變異等,其中邏輯覆蓋法是主要的測(cè)試方法。[5](3)灰盒測(cè)試。灰盒測(cè)試則介于黑盒測(cè)試和白盒測(cè)試之間?;液袦y(cè)試除了重視輸出相對(duì)于出入的正確性,也看重其內(nèi)部表現(xiàn)。但是它不可能像白盒測(cè)試那樣詳細(xì)和完整。它只是簡(jiǎn)單的靠一些象征性的現(xiàn)象或標(biāo)志來(lái)判斷其內(nèi)部的運(yùn)行情況,因此在內(nèi)部結(jié)果出現(xiàn)錯(cuò)誤,但輸出結(jié)果正確的情況下可以采取灰盒測(cè)試方法。因?yàn)樵诖饲闆r下灰盒比白盒**。漏洞掃描報(bào)告顯示依賴庫(kù)存在5個(gè)已知CVE漏洞。

軟件檢測(cè)報(bào)告在哪里辦,測(cè)評(píng)

    的值不一定判定表法根據(jù)因果來(lái)制定判定表組成部分1條件樁:所有條件2動(dòng)作樁:所有結(jié)果3條件項(xiàng):針對(duì)條件樁的取值4動(dòng)作項(xiàng):針對(duì)動(dòng)作樁的取值不犯罪,不抽*是好男人,不喝酒是好男人,只要打媳婦就是壞男人條件樁1不犯罪1102不抽*1013不喝酒011動(dòng)作樁好男人11壞男人1場(chǎng)景法模擬用戶操作軟件時(shí)的場(chǎng)景,主要用于測(cè)試系統(tǒng)的業(yè)務(wù)流程先關(guān)注功能和業(yè)務(wù)是否正確實(shí)現(xiàn),然后再使用等價(jià)類和邊界值進(jìn)行檢測(cè)?;玖髡_的業(yè)務(wù)流程來(lái)實(shí)現(xiàn)一條操作路徑備選流模擬一條錯(cuò)誤的操作流程用例場(chǎng)景要從開(kāi)始到結(jié)束便利用例中所有的基本流和備選流。流程分析法流程-路徑針對(duì)路徑使用路徑分析的方法設(shè)計(jì)測(cè)試用例降低測(cè)試用例設(shè)計(jì)難度,只要搞清楚各種流程,就可以設(shè)計(jì)出高質(zhì)量的測(cè)試用例,而不需要太多測(cè)試經(jīng)驗(yàn)1詳細(xì)了解需求2根據(jù)需求說(shuō)明或界面原型,找出業(yè)務(wù)流程的哥哥頁(yè)面以及流轉(zhuǎn)關(guān)系3畫(huà)出業(yè)務(wù)流程axure4寫用例,覆蓋所有路徑分支錯(cuò)誤推斷法利用經(jīng)驗(yàn)猜測(cè)出出錯(cuò)的可能類型,列出所有可能的錯(cuò)誤和容易發(fā)生錯(cuò)誤的情況。多考慮異常,反面,特殊輸入,以攻擊者的態(tài)度對(duì)臺(tái)程序。正交表對(duì)可選項(xiàng)多種可取值進(jìn)行均等選取組合,**大概率覆蓋測(cè)試用例1根據(jù)控件和取值數(shù)選擇一個(gè)合適的正交表2列舉取值并編號(hào)。對(duì)比分析顯示資源占用率高于同類產(chǎn)品均值26%。貴州第三方軟件測(cè)評(píng)單位

艾策檢測(cè)為新能源汽車電池提供安全性能深度解析。軟件檢測(cè)報(bào)告在哪里辦

    步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,基于多模態(tài)數(shù)據(jù)融合方法,將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本作為測(cè)試樣本,并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。進(jìn)一步的,所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示,是統(tǒng)計(jì)當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示,是先對(duì)當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,然后按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息;所述提取軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示,是先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征。進(jìn)一步的,采用3-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng)產(chǎn)生連續(xù)部分重疊的短序列特征。進(jìn)一步的。軟件檢測(cè)報(bào)告在哪里辦

標(biāo)簽: 測(cè)評(píng)