軟件檢測(cè)報(bào)告在哪里做

來(lái)源: 發(fā)布時(shí)間:2025-04-10

    并分發(fā)至項(xiàng)目涉及的所有管理人員和開(kāi)發(fā)人員。5)將測(cè)試目標(biāo)反映在測(cè)試計(jì)劃中。(II)啟動(dòng)測(cè)試計(jì)劃過(guò)程制訂計(jì)劃是使一個(gè)過(guò)程可重復(fù),可定義和可管理的基礎(chǔ)。測(cè)試計(jì)劃應(yīng)包括測(cè)試目的,風(fēng)險(xiǎn)分析,測(cè)試策略以及測(cè)試設(shè)計(jì)規(guī)格說(shuō)明和測(cè)試用例。此外,測(cè)試計(jì)劃還應(yīng)說(shuō)明如何分配測(cè)試資源,如何劃分單元測(cè)試,集成測(cè)試,系統(tǒng)測(cè)試和驗(yàn)收測(cè)試的任務(wù)。啟動(dòng)測(cè)試計(jì)劃過(guò)程包含5個(gè)子目標(biāo):1)建立**內(nèi)的測(cè)試計(jì)劃**并予以經(jīng)費(fèi)支持。2)建立**內(nèi)的測(cè)試計(jì)劃政策框架并予以管理上的支持。3)開(kāi)發(fā)測(cè)試計(jì)劃模板井分發(fā)至項(xiàng)目的管理者和開(kāi)發(fā)者。4)建立一種機(jī)制,使用戶需求成為測(cè)試計(jì)劃的依據(jù)之一。5)評(píng)價(jià),推薦和獲得基本的計(jì)劃工具并從管理上支持工具的使用。(III)制度化基本的測(cè)試技術(shù)和方法?為改進(jìn)測(cè)試過(guò)程能力,**中需應(yīng)用基本的測(cè)試技術(shù)和方法,并說(shuō)明何時(shí)和怎樣使用這些技術(shù),方法和支持工具。將基本測(cè)試技術(shù)和方法制度化有2個(gè)子目標(biāo):1)在**范圍內(nèi)成立測(cè)試技術(shù)組,研究,評(píng)價(jià)和推薦基本的測(cè)試技術(shù)和測(cè)試方法,推薦支持這些技術(shù)與方法的基本工具。2)制訂管理方針以保證在全**范圍內(nèi)一致使用所推薦的技術(shù)和方法。第三級(jí)集成級(jí)在集成級(jí),測(cè)試不**是跟隨在編碼階段之后的一個(gè)階段。從傳統(tǒng)到智能:艾策科技助力制造業(yè)升級(jí)之路。軟件檢測(cè)報(bào)告在哪里做

軟件檢測(cè)報(bào)告在哪里做,測(cè)評(píng)

    生成取值表。3把取值表與選擇的正交表進(jìn)行映射控件數(shù)Ln(取值數(shù))3個(gè)控件5個(gè)取值5的3次冪混合正交表當(dāng)控件的取值數(shù)目水平不一致時(shí)候,使用allp**rs工具生成1等價(jià)類(lèi)劃分法劃分值2邊界值分析法邊界值3錯(cuò)誤推斷法經(jīng)驗(yàn)4因果圖分析法關(guān)系5判定表法條件和結(jié)果6流程圖法流程路徑梳理7場(chǎng)景法主要功能和業(yè)務(wù)的事件8正交表先關(guān)注主要功能和業(yè)務(wù)流程,業(yè)務(wù)邏輯是否正確實(shí)現(xiàn),考慮場(chǎng)景法需要輸入數(shù)據(jù)的地方,考慮等價(jià)類(lèi)劃分法+邊界值分析法,發(fā)現(xiàn)程序錯(cuò)誤的能力**強(qiáng)存在輸入條件的組合情況,考慮因果圖判定表法多種參數(shù)配置組合情況,正交表排列法采用錯(cuò)誤推斷法再追加測(cè)試用例。需求分析場(chǎng)景法分析主要功能輸入的等價(jià)類(lèi)邊界值輸入的各種組合因果圖判定表多種參數(shù)配置正交表錯(cuò)誤推斷法經(jīng)驗(yàn)軟件缺陷軟件產(chǎn)品中存在的問(wèn)題,用戶所需要的功能沒(méi)有完全實(shí)現(xiàn)。廣州軟件檢測(cè)公司整合多學(xué)科團(tuán)隊(duì)的定制化檢測(cè)方案,體現(xiàn)艾策服務(wù)于制造的技術(shù)深度。

軟件檢測(cè)報(bào)告在哪里做,測(cè)評(píng)

    圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒(méi)有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。

    12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志;所述存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無(wú)證書(shū)表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。進(jìn)一步的,所述生成軟件樣本的字節(jié)碼n-grams特征視圖的具體實(shí)現(xiàn)過(guò)程如下:先從當(dāng)前軟件樣本的所有短序列特征中選取詞頻tf**高的多個(gè)短序列特征;然后計(jì)算選取的每個(gè)短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個(gè)短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強(qiáng);**后在選取的詞頻tf**高的多個(gè)短序列特征中選取,生成字節(jié)碼n-grams特征視圖;:=tf×idf;其中,ni,j是短序列特征i在軟件樣本j中出現(xiàn)的次數(shù),∑knk,j指軟件樣本j中所有短序列特征出現(xiàn)的次數(shù)之和,k為短序列特征總數(shù),1≤i≤k;其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。進(jìn)一步的,所述步驟s2采用中間融合方法訓(xùn)練多模態(tài)深度集成模型。用戶隱私測(cè)評(píng)確認(rèn)數(shù)據(jù)采集范圍超出聲明條款3項(xiàng)。

軟件檢測(cè)報(bào)告在哪里做,測(cè)評(píng)

    12)把節(jié)裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標(biāo)志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統(tǒng)計(jì)差異:(1)證書(shū)表是軟件廠商的可認(rèn)證的聲明,惡意軟件很少有證書(shū)表,而良性軟件大部分都有軟件廠商可認(rèn)證的聲明;(2)惡意軟件的調(diào)試數(shù)據(jù)也明顯小于正常文件的,這是因?yàn)閻阂廛浖榱嗽黾诱{(diào)試的難度,很少有調(diào)試數(shù)據(jù);(3)惡意軟件4個(gè)節(jié)(.text、.rsrc、.reloc和.rdata)的characteristics屬性和良性軟件的也有明顯差異,characteristics屬性通常**該節(jié)是否可讀、可寫(xiě)、可執(zhí)行等,部分惡意軟件的代碼節(jié)存在可寫(xiě)異常,只讀數(shù)據(jù)節(jié)和資源節(jié)存在可寫(xiě)、可執(zhí)行異常等;(4)惡意軟件資源節(jié)的資源個(gè)數(shù)也明顯少于良性軟件的,如消息表、組圖表、版本資源等,這是因?yàn)閻阂廛浖苌偈褂脠D形界面資源,也很少有版本信息。pe文件很多格式屬性沒(méi)有強(qiáng)制限制,文件完整性約束松散,存在著較多的冗余屬性和冗余空間,為pe格式惡意軟件的傳播和隱藏創(chuàng)造了條件。此外,由于惡意軟件為了方便傳播和隱藏,盡一切可能的減小文件大小,文件結(jié)構(gòu)的某些部分重疊,同時(shí)對(duì)一些屬性進(jìn)行了特別設(shè)置以達(dá)到anti-dump、anti-debug或抗反匯編。數(shù)據(jù)驅(qū)動(dòng)決策:艾策科技如何提升企業(yè)競(jìng)爭(zhēng)力。軟件產(chǎn)品測(cè)試機(jī)構(gòu)

網(wǎng)絡(luò)安全新時(shí)代:深圳艾策的防御策略解析。軟件檢測(cè)報(bào)告在哪里做

    先將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別輸入至一個(gè)深度神經(jīng)網(wǎng)絡(luò)中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行模型訓(xùn)練,得到多模態(tài)深度集成模型。進(jìn)一步的,所述多模態(tài)深度集成模型的隱藏層的***函數(shù)采用relu,輸出層的***函數(shù)采用sigmoid,中間使用dropout層進(jìn)行正則化,優(yōu)化器采用adagrad。進(jìn)一步的,所述訓(xùn)練得到的多模態(tài)深度集成模型中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,且3個(gè)隱含層中間間隔設(shè)置有dropout層;用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,且4個(gè)隱含層中間間隔設(shè)置有dropout層;用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;所述dropout層的dropout率均等于。本發(fā)明實(shí)施例的有益效果是,提出了一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,應(yīng)用了多模態(tài)深度學(xué)習(xí)方法來(lái)融合dll和api、格式結(jié)構(gòu)信息、字節(jié)碼n-grams特征。軟件檢測(cè)報(bào)告在哪里做

標(biāo)簽: 測(cè)評(píng)