此外格式結(jié)構(gòu)信息具有明顯的語(yǔ)義信息,但基于格式結(jié)構(gòu)信息的檢測(cè)方法沒有提取決定軟件行為的代碼節(jié)和數(shù)據(jù)節(jié)信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執(zhí)行文件的一些性質(zhì),字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息都部分捕捉到了惡意軟件和良性軟件間的可區(qū)分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執(zhí)行文件的本質(zhì),使得檢測(cè)結(jié)果準(zhǔn)確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測(cè)。技術(shù)實(shí)現(xiàn)要素:本發(fā)明實(shí)施例的目的在于提供一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,以解決現(xiàn)有采用二進(jìn)制可執(zhí)行文件的單一特征類型進(jìn)行惡意軟件檢測(cè)的檢測(cè)方法檢測(cè)準(zhǔn)確率不高、檢測(cè)可靠性低、泛化性和魯棒性不佳的問(wèn)題,以及其難以檢測(cè)出偽造良性軟件特征的惡意軟件的問(wèn)題。本發(fā)明實(shí)施例所采用的技術(shù)方案是,基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法,按照以下步驟進(jìn)行:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖。跨設(shè)備測(cè)試報(bào)告指出平板端UI元素存在比例失調(diào)問(wèn)題。信息化項(xiàng)目軟件檢測(cè)報(bào)告
保留了較多信息,同時(shí)由于操作數(shù)比較隨機(jī),某種程度上又沒有抓住主要矛盾,干擾了主要語(yǔ)義信息的提取。pe文件即可移植文件導(dǎo)入節(jié)中的動(dòng)態(tài)鏈接庫(kù)(dll)和應(yīng)用程序接口(api)信息能大致反映軟件的功能和性質(zhì),通過(guò)一個(gè)可執(zhí)行程序引用的dll和api信息可以粗略的預(yù)測(cè)該程序的功能和行為。belaoued和mazouzi應(yīng)用統(tǒng)計(jì)khi2檢驗(yàn)分析了pe格式的惡意軟件和良性軟件的導(dǎo)入節(jié)中的dll和api信息,分析顯示惡意軟件和良性軟件使用的dll和api信息統(tǒng)計(jì)上有明顯的區(qū)別。后續(xù)的研究人員提出了挖掘dll和api信息的惡意軟件檢測(cè)方法,該類方法提取的特征語(yǔ)義信息豐富,但*從二進(jìn)制可執(zhí)行文件的導(dǎo)入節(jié)提取特征,忽略了整個(gè)可執(zhí)行文件的大量信息。惡意軟件和被***二進(jìn)制可執(zhí)行文件格式信息上存在一些異常,這些異常是檢測(cè)惡意軟件的關(guān)鍵。研究人員提出了基于二進(jìn)制可執(zhí)行文件格式結(jié)構(gòu)信息的惡意軟件檢測(cè)方法,這類方法從二進(jìn)制可執(zhí)行文件的pe文件頭、節(jié)頭部、資源節(jié)等提取特征,基于這些特征使用機(jī)器學(xué)習(xí)分類算法處理,取得了較高的檢測(cè)準(zhǔn)確率。這類方法通常不受變形或多態(tài)等混淆技術(shù)影響,提取特征只需要對(duì)pe文件進(jìn)行格式解析,無(wú)需遍歷整個(gè)可執(zhí)行文件,提取特征速度較快。軟件出廠檢測(cè)報(bào)告漏洞掃描報(bào)告顯示依賴庫(kù)存在5個(gè)已知CVE漏洞。
測(cè)試人員素質(zhì)要求1、責(zé)任心2、學(xué)習(xí)能力3、懷疑精神4、溝通能力5、專注力6、洞察力7、團(tuán)隊(duì)精神8、注重積累軟件測(cè)試技術(shù)測(cè)試目的編輯軟件測(cè)試的目的是為了保證軟件產(chǎn)品的**終質(zhì)量,在軟件開發(fā)的過(guò)程中,對(duì)軟件產(chǎn)品進(jìn)行質(zhì)量控制。一般來(lái)說(shuō)軟件測(cè)試應(yīng)由**的產(chǎn)品評(píng)測(cè)中心負(fù)責(zé),嚴(yán)格按照軟件測(cè)試流程,制定測(cè)試計(jì)劃、測(cè)試方案、測(cè)試規(guī)范,實(shí)施測(cè)試,對(duì)測(cè)試記錄進(jìn)行分析,并根據(jù)回歸測(cè)試情況撰寫測(cè)試報(bào)告。測(cè)試是為了證明程序有錯(cuò),而不能保證程序沒有錯(cuò)誤。軟件測(cè)試技術(shù)常見測(cè)試編輯回歸測(cè)試功能測(cè)試壓力測(cè)試負(fù)載測(cè)試性能測(cè)試易用性測(cè)試安裝與反安裝測(cè)試**測(cè)試安全性測(cè)試兼容性測(cè)試內(nèi)存泄漏測(cè)試比較測(cè)試Alpha測(cè)試Beta測(cè)試測(cè)試信息流1、軟件配置2、測(cè)試配置3、測(cè)試工具軟件測(cè)試技術(shù)-軟件測(cè)試的分類1、從是否需要執(zhí)行被測(cè)試軟件的角度分類(靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試)。2、從測(cè)試是否針對(duì)軟件結(jié)構(gòu)與算法的角度分類(白盒測(cè)試和黑盒測(cè)試)。3、從測(cè)試的不同階段分類(單元測(cè)試、集成測(cè)試、系統(tǒng)測(cè)試、驗(yàn)收測(cè)試)。
每一種信息的來(lái)源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機(jī)器學(xué)習(xí)旨在通過(guò)機(jī)器學(xué)習(xí)的方法實(shí)現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學(xué)習(xí)從1970年代起步,經(jīng)歷了幾個(gè)發(fā)展階段,在2010年后***步入深度學(xué)習(xí)(deeplearning)階段。在某種意義上,深度學(xué)習(xí)可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復(fù)雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個(gè)**的數(shù)據(jù)集融合成一個(gè)單一的特征向量空間,然后將其用作機(jī)器學(xué)習(xí)算法的輸入,訓(xùn)練機(jī)器學(xué)習(xí)模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無(wú)法充分利用多個(gè)模態(tài)數(shù)據(jù)間的互補(bǔ)性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗(yàn)從每個(gè)模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學(xué)習(xí)算法直接學(xué)習(xí)特征表示,然后在特性級(jí)別上進(jìn)行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓(xùn)練好的分類器輸出決策進(jìn)行融合,如圖2所示。5G 與物聯(lián)網(wǎng):深圳艾策的下一個(gè)技術(shù)前沿。
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對(duì)數(shù)損失變化曲線圖。圖7是前端融合模型的檢測(cè)混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測(cè)混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對(duì)數(shù)損失變化曲線圖。圖13是后端融合模型的檢測(cè)混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測(cè)混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對(duì)數(shù)損失變化曲線圖。圖19是中間融合模型的檢測(cè)混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測(cè)混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對(duì)本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例?;诒景l(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動(dòng)前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。云計(jì)算與 AI 融合:深圳艾策的創(chuàng)新解決方案。寧波第三方軟件測(cè)試中心
無(wú)障礙測(cè)評(píng)認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。信息化項(xiàng)目軟件檢測(cè)報(bào)告
第三方軟件檢測(cè)機(jī)構(gòu)在開展第三方軟件測(cè)試的過(guò)程中,需要保持測(cè)試整體的嚴(yán)謹(jǐn)性,也需要對(duì)測(cè)試結(jié)果負(fù)責(zé)并確保公平公正性。所以,在測(cè)試過(guò)程中,軟件測(cè)試所使用的測(cè)試工具也是很重要的一方面。我們簡(jiǎn)單介紹一下在軟件檢測(cè)過(guò)程中使用的那些軟件測(cè)試工具。眾所周知,軟件測(cè)試的參數(shù)項(xiàng)目包括功能性、性能、安全性等參數(shù),而其中出具軟件測(cè)試報(bào)告主要的就是性能測(cè)試和安全測(cè)試所需要使用到的工具了。一、軟件測(cè)試性能測(cè)試工具這個(gè)參數(shù)的測(cè)試工具有l(wèi)oadrunner,jmeter兩大主要工具,國(guó)產(chǎn)化性能測(cè)試軟件目前市場(chǎng)并未有比較大的突破,其中l(wèi)oadrunner是商業(yè)軟件測(cè)試工具,jmeter為開源社區(qū)版本的性能測(cè)試工具。從第三方軟件檢測(cè)機(jī)構(gòu)的角度上來(lái)說(shuō),是不太建議使用開源測(cè)試工具的。首先,開源測(cè)試工具并不能確保結(jié)果的準(zhǔn)確性,雖然技術(shù)層面上來(lái)說(shuō)都可以進(jìn)行測(cè)試,但是因?yàn)殚_源更多的需要考量軟件測(cè)試人員的測(cè)試技術(shù)如何進(jìn)行使用,涉及到了人為因素的影響,一般第三方軟件檢測(cè)機(jī)構(gòu)都會(huì)使用loadrunner作為性能測(cè)試的工具來(lái)進(jìn)行使用。而loadrunner被加拿大的一家公司收購(gòu)以后,在整個(gè)中國(guó)市場(chǎng)區(qū)域的銷售和營(yíng)銷都以第三方軟件檢測(cè)機(jī)構(gòu)為基礎(chǔ)來(lái)開展工作。信息化項(xiàng)目軟件檢測(cè)報(bào)告