在深亞微米(0.15μm及以下)集成電路制造中,后段工藝日趨重要,為降低阻容遲滯(RCDelay),保證信號(hào)傳輸,減小功耗,有必要對(duì)后段工藝進(jìn)行改進(jìn),Via阻擋層MOCVD(Metal-organicChemicalVaporDeposition,金屬有機(jī)物化學(xué)氣相淀積)TiN是其中重要研究課題之一。本論文基于薄膜電阻的理論分析,從厚度、雜質(zhì)濃度和晶體結(jié)構(gòu)三大薄膜電阻影響因素出發(fā)系統(tǒng)研究MOCVDTiN材料在平面薄膜上和真實(shí)結(jié)構(gòu)中的各種性質(zhì),重點(diǎn)是等離子體處理(PlasmaTreatment,PT)下的晶體生長(zhǎng),制備循環(huán)次數(shù)的選擇對(duì)薄膜雜質(zhì)濃度、晶體結(jié)構(gòu)及電阻性能的影響,不同工藝薄膜在真實(shí)結(jié)構(gòu)中物理形貌、晶體結(jié)構(gòu)和電阻性能的表現(xiàn)和規(guī)律,超薄TiN薄膜(<5nm)的實(shí)際應(yīng)用等。俄歇能譜、透射電子顯微鏡和方塊電阻測(cè)試證明PT作用下雜質(zhì)濃度降低,同時(shí)晶體生長(zhǎng),薄膜致密化而電阻率降低。PT具有飽和時(shí)間和深度,較厚薄膜需多循環(huán)制備以充分處理,發(fā)現(xiàn)薄膜厚度較小時(shí)(本實(shí)驗(yàn)條件下為4nm),增加循環(huán)次數(shù)雖然進(jìn)一步降低了雜質(zhì)濃度,但會(huì)引入界面而使薄膜電阻率增加。通過TEM觀測(cè)發(fā)現(xiàn)由于等離子體運(yùn)動(dòng)的各向異性,真實(shí)結(jié)構(gòu)中PT效率在側(cè)壁遠(yuǎn)低于頂部和底部,這導(dǎo)致側(cè)壁薄膜在PT后更厚。無論在空氣中還是重油環(huán)境下,TiN涂層摩擦系數(shù)均高于DLC涂層,耐磨性低于DLC涂層。宿遷加硬氮化鈦產(chǎn)品介紹
50. 用TiN 薄膜涂覆在IF—MS2上。可以提高二鉬化硫潤(rùn)滑劑的耐磨性。用TIN 薄膜涂覆在IF—MS2上,因?yàn)樗哂械母哂捕?、高熔點(diǎn)、高磨損抵抗力,優(yōu)良的化學(xué)穩(wěn)定性等特點(diǎn),因此可以在提高飛機(jī)和航天器的發(fā)動(dòng)機(jī)等零件的潤(rùn)滑性能的同時(shí),又可以保證航天零件的耐高溫和耐摩擦性能。TiN 薄膜用于高溫大氣穩(wěn)定太陽能吸收層的研究開始于1984年,較為近(Ti,A1)N 涂層也被建議應(yīng)用于太陽能選擇吸收層和太陽能控制窗口,這主要是因?yàn)?Ti,AI)N 涂層耐高溫的特點(diǎn)。關(guān)于TiN和TiA1N 涂層在太陽能領(lǐng)域的應(yīng)用。嘉興鍍鈦氮化鈦TiN作催化劑載體,可通過提高貴金屬鉑利用率、增強(qiáng)金屬-載體間相互作用、促進(jìn)質(zhì)量/電荷轉(zhuǎn)移及增強(qiáng)耐腐蝕。
涂層硬質(zhì)合金刀具給金屬加工業(yè)帶來了巨大的影響,涂層高速鋼鉆頭的發(fā)展顯然是一個(gè)自然的結(jié)果。在1980年芝加哥展覽會(huì)上至少在兩個(gè)展臺(tái)上展出了氮化鈦涂層高速鋼齒輪滾刀,但目前尚無商品供應(yīng)。涂層高速鋼滾刀的性能已在幾個(gè)實(shí)驗(yàn)室作了試驗(yàn)。取得成功的關(guān)鍵在于要同時(shí)解決這樣一些問題,例如涂層的附著強(qiáng)度、涂層在大多數(shù)形狀頗為復(fù)雜的高速鋼刀具的整個(gè)表面上涂復(fù)的均勻性以及涂復(fù)過程中如何保持刀具原熱處理狀態(tài),采用了物物理相沉積法,其溫度較低,不影響鋼的硬度。涂復(fù)后的刀具,涂層厚度均勻,且不產(chǎn)生積屑瘤。涂層材料滲入了高速鋼表層,其厚度隨刀具尺寸大小而變。通常只有幾微米。涂層鉆頭的成本比無涂層的同類鉆頭貴一倍,但在很多場(chǎng)合下,涂層鉆頭的使用壽命增加2-3倍。
表面涂層技術(shù)已成為提高材料抗疲勞和抗磨損性能的重要手段。許多零部件,例如刀具、齒輪和軸承等,通過表面涂層,改善接觸性能。但由于涂層制造過程中不可避免的缺陷以及涂層基體之間彈性參數(shù)不連續(xù)性,在接觸應(yīng)力作用下涂層結(jié)構(gòu)易產(chǎn)生裂紋,隨著裂紋的擴(kuò)展,引起涂層的剝落而造成零件的失效。為滿足涂層結(jié)構(gòu)在工程應(yīng)用中的可靠性要求,需要研究在摩擦接觸條件下涂層結(jié)構(gòu)的失效機(jī)理。本文主要完成了以下工作:1利用等離子輔助化學(xué)氣相沉積技術(shù)制備厚度為10μm的氮化鈦涂層,其基體為高速鋼。利用顯微硬度儀測(cè)量得到涂層的硬度約為2000HV4000HV,利用納米壓痕儀測(cè)量得到涂層的彈性模量和斷裂韌度分別為590GPa和3.30MPa·1/2m。劃痕法本質(zhì)上屬于摩擦接觸問題,可通過掃描電鏡對(duì)涂層劃痕表面進(jìn)行觀察與分析,結(jié)果表明在涂層表面產(chǎn)生了平均間距約為5.1μm弧形裂紋,同時(shí)測(cè)得涂層表面的摩擦系數(shù)約為0.25。在上世紀(jì)70年代,氮化鈦涂層成功應(yīng)用于刀具等切割加工工具上,促進(jìn)了刀具加工行業(yè)的發(fā)展。
自20世紀(jì)80年代以來,氮化鈦的研究受到了重視。氮化鈦化學(xué)性能穩(wěn)定,具有較強(qiáng)的耐磨損、耐腐蝕性及良好的生物相容性。在口腔醫(yī)學(xué)中主要應(yīng)用于切削及旋轉(zhuǎn)器械、種植體和義齒等表面鍍膜,以增強(qiáng)其耐磨損性及生物安全性。氮化鈦涂層作為一種新型陶瓷涂層,由于具有高熔點(diǎn)、高硬度、高溫化學(xué)穩(wěn)定性、高耐磨性及高耐腐蝕性能等優(yōu)點(diǎn),已被廣泛應(yīng)用于切削刀具、高溫結(jié)構(gòu)材料和抗磨抗蝕部件上。在不銹鋼表面制備一層氮化鈦涂層來進(jìn)行表面改性,可有效提高其表面力學(xué)性能、耐蝕性能和生物兼容性能,有利于不銹鋼在航空航天、艦船兵器、石油化工、生物醫(yī)學(xué)等領(lǐng)域應(yīng)用。氮化鈦是用于優(yōu)良度的金屬陶瓷工具、噴汽推進(jìn)器、以及火箭等優(yōu)良的結(jié)構(gòu)材料。另氮化鈦可作為高溫潤(rùn)滑劑。宿遷加硬氮化鈦產(chǎn)品介紹
19. 氮化鈦(TiN)具有典型的NaCl型結(jié)構(gòu),屬面心立方點(diǎn)陣,晶格常數(shù)a=0.4241nm。宿遷加硬氮化鈦產(chǎn)品介紹
口腔是有生物化學(xué)和電化學(xué)因素影響的復(fù)雜環(huán)境,具有較強(qiáng)的腐蝕性。因而對(duì)應(yīng)用于口腔中的金屬材料也提出了更高的要求。在磁性附著體的研究及臨床應(yīng)用中,我們發(fā)現(xiàn)磁性附著體在口腔中長(zhǎng)期使用后所出現(xiàn)的腐蝕和磨損是導(dǎo)致磁性附著體的固位力下降的主要原因,也是影響磁性附著體遠(yuǎn)期應(yīng)用效果的主要問題。進(jìn)一步提高磁性附著體的耐腐蝕性和耐磨損性是解決這一問題的適合途徑。近年來,隨著當(dāng)今各種鍍膜技術(shù),如化學(xué)氣相沉積(chemicalvapordepositionCVD)、物物理相沉積(physicalvapordepositionPVD)、等離子體輔助化學(xué)氣相沉積(physicalchemicalvapordepositionPCVD)、激光輔助化學(xué)氣相沉積(laserchemicalvapordepositionLCVD)、離子鍍(ionplateIP)和離子束輔助沉積技術(shù)(ionbeamassisteddepositionIBAD)等不斷完善和發(fā)展,使具有高硬度、高耐磨性、良好耐腐蝕性的氮化鈦納米膜在國(guó)際和國(guó)內(nèi)都得到了適合研究與應(yīng)用。宿遷加硬氮化鈦產(chǎn)品介紹
蘇州華銳杰新材料科技有限公司致力于汽摩及配件,以科技創(chuàng)新實(shí)現(xiàn)高質(zhì)量管理的追求。華銳杰作為汽摩及配件的企業(yè)之一,為客戶提供良好的類金剛石(DLC),氮化鈦,氮化鉻。華銳杰不斷開拓創(chuàng)新,追求出色,以技術(shù)為先導(dǎo),以產(chǎn)品為平臺(tái),以應(yīng)用為重點(diǎn),以服務(wù)為保證,不斷為客戶創(chuàng)造更高價(jià)值,提供更優(yōu)服務(wù)。華銳杰始終關(guān)注自身,在風(fēng)云變化的時(shí)代,對(duì)自身的建設(shè)毫不懈怠,高度的專注與執(zhí)著使華銳杰在行業(yè)的從容而自信。